Loading…
The interaction-sensitive states of a trapped two-component ideal Fermi gas and application to the virial expansion of the unitary Fermi gas
We consider a two-component ideal Fermi gas in an isotropic harmonic potential. Some eigenstates have a wavefunction that vanishes when two distinguishable fermions are at the same location, and would be unaffected by s-wave contact interactions between the two components. We determine the other, in...
Saved in:
Published in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2016-05, Vol.49 (26), p.265301 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider a two-component ideal Fermi gas in an isotropic harmonic potential. Some eigenstates have a wavefunction that vanishes when two distinguishable fermions are at the same location, and would be unaffected by s-wave contact interactions between the two components. We determine the other, interaction-sensitive eigenstates, using a Faddeev ansatz. This problem is nontrivial, due to degeneracies and to the existence of unphysical Faddeev solutions. As an application we present a new conjecture for the fourth-order cluster or virial coefficient of the unitary Fermi gas, in good agreement with the numerical results of Blume and coworkers. |
---|---|
ISSN: | 1751-8113 1751-8121 |
DOI: | 10.1088/1751-8113/49/26/265301 |