Loading…

Activating Oxygen Redox in Layered Na x MnO 2 to Suppress Intrinsic Deficient Behavior and Enable Phase‐Transition‐Free Sodium Ion Cathode

P2‐type layered Na x MnO 2 cathode shows great potential in practical sodium ion batteries, especially for grid‐level applications due to its eco‐friendly and cost‐effective sodium and manganese resources, and high theoretical specific capacity. However, several obstacles including severe phase tran...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2022-08, Vol.32 (35)
Main Authors: Wang, Feng, Peng, Bo, Zeng, Suyuan, Zhao, Liping, Zhang, Xiaolei, Wan, Guanglin, Zhang, Hongli, Zhang, Genqiang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:P2‐type layered Na x MnO 2 cathode shows great potential in practical sodium ion batteries, especially for grid‐level applications due to its eco‐friendly and cost‐effective sodium and manganese resources, and high theoretical specific capacity. However, several obstacles including severe phase transitions of P2‐O2 and P2‐P2′, low redox potential of Mn 3+ /Mn 4+ , disproportionation reaction and Jahn‐Teller distortion of Mn 3+ , and deficient behavior have already hindered its practical applications. Herein, a Li, Cu co‐doping strategy to tackle the mentioned obstacles by activating the oxygen redox is presented. The Li, Cu co‐doped material exhibits solid solution reaction without any phase transitions as proved by in situ X‐ray diffraction measurement and reduces the dissolution of active manganese element. With this modification treatment, it can dramatically raise the cycling stability from 30.4% to 80.1% after 150 cycles and simultaneously improves the deficient behavior due to the capacity contribution of oxygen redox at high voltage. More importantly, the coin‐cell type sodium ion full cell assembled with this cathode and commercial hard carbon anode delivers a promising energy density of 225.1 Wh kg –1 .
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202202665