Loading…
An Utrastable Mg/Zr Modified P2‐Type Na 2/3 Ni 1/3 Mn 2/3 O 2 Cathode Material for High‐Power Sodium‐Ion Batteries
P2‐Na 2/3 Ni 1/3 Mn 2/3 O 2 demonstrates high energy density owing to its high specific capacity and high discharge voltage, but suffering from rapid performance decay due to severe structural degradation and aggravated surface side reaction during high‐voltage cycling. Herein, a Mg/Zr modified Na 0...
Saved in:
Published in: | Advanced functional materials 2024-09 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | P2‐Na 2/3 Ni 1/3 Mn 2/3 O 2 demonstrates high energy density owing to its high specific capacity and high discharge voltage, but suffering from rapid performance decay due to severe structural degradation and aggravated surface side reaction during high‐voltage cycling. Herein, a Mg/Zr modified Na 0.67 Ni 0.25 Mg 0.08 Mn 0.64 Zr 0.03 O 2 cathode is proposed with good structural stability and excellent cycling performance, showing reversible capacity of 123.2 mAh g −1 (0.1 C) and capacity retention of 99.1% after 100 cycles. The cycling stability is outstanding among P2‐type cathodes reported so far. In situ XRD analyses reveal a suppressed P2‐O2 phase transition after Mg modification, further incorporation of Zr greatly stabilizes the layered structure as some Zr ions reside in the Na layer providing a pinning effect to reduce the slide of TMO 2 layer. First‐principles calculations suggest that oxygen loss in Na 0.67 Ni 0.25 Mg 0.08 Mn 0.64 Zr 0.03 O 2 cathode is suppressed as Zr incorporation prevents the formation of oxygen vacancies. XPS analyses verify a Zr─O protective layer self‐segregated on particle surface during material synthesis. The expanded Na + transport channel confirmed by the XRD analysis well explains the favored Na‐ion mobility verified by a high reversible capacity of 105.5 mAh/g at 20 C. This work sheds new light on providing a practical P2‐structured cathode material for high‐power sodium ion batteries. |
---|---|
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202411347 |