Loading…

Dinitrogen Activation by Heteronuclear Metal Carbide Cluster Anions Y 1‐3 CoC 1,2 − : An Experimental and DFT Study

Mass spectrometry was used to observe the reactions between Y−Co heteronuclear metal carbide cluster anions Y 1‐3 CoC 1,2 − and N 2 at room temperature. Y 2 CoC 1,2 − can produce Co ejection products, in which Y 2 CoC − also has N 2 association products; YCoC 2 − and Y 3 CoC − only generate N 2 asso...

Full description

Saved in:
Bibliographic Details
Published in:ChemCatChem 2024-04, Vol.16 (7)
Main Authors: Wang, Meng‐Meng, Wang, Ming, Ji, Zhi‐Wen, Huang, Xiao‐Meng, He, Han‐Bin, Ding, Xun‐Lei, Ma, Jia‐Bi
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mass spectrometry was used to observe the reactions between Y−Co heteronuclear metal carbide cluster anions Y 1‐3 CoC 1,2 − and N 2 at room temperature. Y 2 CoC 1,2 − can produce Co ejection products, in which Y 2 CoC − also has N 2 association products; YCoC 2 − and Y 3 CoC − only generate N 2 association products, while YCoC − and Y 3 CoC 2 − are inert to N 2 . Detailed reaction pathways were obtained through density functional theory calculations, which reasonably explain the experimental phenomena. Co is superior to Y as the electrophilic reaction site in the clusters and is the preferential initial adsorption site for N 2 . Some crucial steps were identified, including N−N dissociation, CC−N formation, C−CN dissociation, and C−N formation. The energy barriers of these steps are closely related to the coordination mode of N/N 2 and C/C 2 in clusters. Two indicators, the N−N bond length and the Mayer bond order, were utilized to describe the activation degree of the N−N bond. Analyses on the density of states and the frontier molecular orbitals reveal the electronic structures of key intermediates for N−N dissociation. The reaction mechanisms of N 2 activation on Y−Co carbide clusters obtained may lay a preliminary foundation for the further development of catalysts for nitrogen reduction reaction (NRR).
ISSN:1867-3880
1867-3899
DOI:10.1002/cctc.202300978