Loading…
Newton's method and periodic solutions of nonlinear wave equations
We prove the existence of periodic solutions of the nonlinear wave equation \documentclass{article}\pagestyle{empty}\begin{document}$$ \mathop \partial \nolimits_t^2 u = \mathop \partial \nolimits_x^2 u - g(x,u), $$\end{document} satisfying either Dirichlet or periodic boundary conditions on the int...
Saved in:
Published in: | Communications on pure and applied mathematics 1993-12, Vol.46 (11), p.1409-1498 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove the existence of periodic solutions of the nonlinear wave equation
\documentclass{article}\pagestyle{empty}\begin{document}$$ \mathop \partial \nolimits_t^2 u = \mathop \partial \nolimits_x^2 u - g(x,u), $$\end{document}
satisfying either Dirichlet or periodic boundary conditions on the interval [O, π]. The coefficients of the eigenfunction expansion of this equation satisfy a nonlinear functional equation. Using a version of Newton's method, we show that this equation has solutions provided the nonlinearity g(x, u) satisfies certain generic conditions of nonresonance and genuine nonlinearity. © 1993 John Wiley & Sons, Inc. |
---|---|
ISSN: | 0010-3640 1097-0312 |
DOI: | 10.1002/cpa.3160461102 |