Loading…

About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds

Traditionally, sulfonated polymers are used as separator materials in PEM fuel cells. Based on recent experimental results on model compounds this paper critically discusses the potentials and limits of sulfonic acid and alternatively phosphonic acid and heterocycles (imidazole) as protogenic groups...

Full description

Saved in:
Bibliographic Details
Published in:Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2005-08, Vol.5 (3), p.355-365
Main Authors: Schuster, M., Rager, T., Noda, A., Kreuer, K. D., Maier, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4349-9c41851dd7e3859ab0f4dd5e113054ea1d8103e0b4991582a0563bd842151f993
cites cdi_FETCH-LOGICAL-c4349-9c41851dd7e3859ab0f4dd5e113054ea1d8103e0b4991582a0563bd842151f993
container_end_page 365
container_issue 3
container_start_page 355
container_title Fuel cells (Weinheim an der Bergstrasse, Germany)
container_volume 5
creator Schuster, M.
Rager, T.
Noda, A.
Kreuer, K. D.
Maier, J.
description Traditionally, sulfonated polymers are used as separator materials in PEM fuel cells. Based on recent experimental results on model compounds this paper critically discusses the potentials and limits of sulfonic acid and alternatively phosphonic acid and heterocycles (imidazole) as protogenic groups for PEM fuel cell electrolytes operating at intermediate temperatures (T > 100 °C) and low humidification. Apart from transport properties, the stability and reactivity of mono‐functionalized model compounds (1‐heptylsulfonic acid (S‐C7), 1‐heptylphosphonic acid (P‐C7) and 2‐heptyl‐imidazole (I‐C7)) and a few diphosphonic acids are examined under wet and dry conditions. These are characterized with respect to their proton conductivity (ac impedance spectroscopy), proton diffusion coefficient (pulsed‐field gradient NMR), thermo‐oxidative stability (TGA under air), electrochemical stability (cyclic voltammetry) and their hydration behavior (TGA under water vapor). The sulfonic acid functionalized compound shows reasonable properties only when a minimum hydration level is guaranteed, while phosphonic acid functionalized compounds combine satisfactory proton conductivity even in the water‐free state at intermediate temperatures (T 
doi_str_mv 10.1002/fuce.200400059
format article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_fuce_200400059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_DKFCJW1M_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4349-9c41851dd7e3859ab0f4dd5e113054ea1d8103e0b4991582a0563bd842151f993</originalsourceid><addsrcrecordid>eNqFkVFP2zAUhaOJSQO21z3fH0CK3dhpzFuVtaVbOyoB4tFy7RtqSOLITgTlx_JbltCp2tue7HN0z3evdKLoOyUjSsj4sug0jsaEMEIIF5-iU5pSHqcZZyfHP0u_RGchPBFCJ1nGTqP36dZ1LbQ7hHznrEZwxYfaeNe6R6ythoV3XQO2hs1sDbfYKK9a52GtWvRWlQGKXi3rXlVobO_CHVYN9lOdxwtYuRe47iprbLuHmw_fuvoKppB721qtSshd1VNtcPWw_rYrCzcsnmprLmCzc6HZHQ1QtYFlj1NvrkSYd7UeeKq0b2hg7QweeK6rTfgafS76C_Hb3_c8up_P7vLreHWzWObTVaxZwkQsNKMZp8ZMMMm4UFtSMGM4UpoQzlBRk1GSINkyISjPxorwNNmajI0pp4UQyXk0OnC1dyF4LGTjbaX8XlIih3bk0I48ttMHxCHwYkvc_2dazu_z2b_Z-JC1ocXXY1b5Z5lOkgmXD78X8sevef7zga4lS_4Avf-mnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds</title><source>Wiley</source><creator>Schuster, M. ; Rager, T. ; Noda, A. ; Kreuer, K. D. ; Maier, J.</creator><creatorcontrib>Schuster, M. ; Rager, T. ; Noda, A. ; Kreuer, K. D. ; Maier, J.</creatorcontrib><description>Traditionally, sulfonated polymers are used as separator materials in PEM fuel cells. Based on recent experimental results on model compounds this paper critically discusses the potentials and limits of sulfonic acid and alternatively phosphonic acid and heterocycles (imidazole) as protogenic groups for PEM fuel cell electrolytes operating at intermediate temperatures (T &gt; 100 °C) and low humidification. Apart from transport properties, the stability and reactivity of mono‐functionalized model compounds (1‐heptylsulfonic acid (S‐C7), 1‐heptylphosphonic acid (P‐C7) and 2‐heptyl‐imidazole (I‐C7)) and a few diphosphonic acids are examined under wet and dry conditions. These are characterized with respect to their proton conductivity (ac impedance spectroscopy), proton diffusion coefficient (pulsed‐field gradient NMR), thermo‐oxidative stability (TGA under air), electrochemical stability (cyclic voltammetry) and their hydration behavior (TGA under water vapor). The sulfonic acid functionalized compound shows reasonable properties only when a minimum hydration level is guaranteed, while phosphonic acid functionalized compounds combine satisfactory proton conductivity even in the water‐free state at intermediate temperatures (T &lt; 200 °C), comparatively high thermo‐oxidative and electrochemical stability and electrochemical reactivity (hydrogen oxidation and oxygen reduction at platinum surfaces). The presence of water leads to moderate water uptake allowing for reasonable conductivities even at room temperature and prevents condensation reactions at higher temperature. The imidazole based system shows the largest electrochemical stability window, but its moderate proton conductivity and thermo‐oxidative stability and the very high overpotential for oxygen reduction on platinum turn out to be severe disadvantages for the envisaged application.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.200400059</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Cyclo Voltammetry ; Electrochemical Stability ; Imidazole ; PEM Fuel Cell ; Phosphonic Acid ; Proton Conductivity ; Proton Diffusion ; Sulfonic Acid</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2005-08, Vol.5 (3), p.355-365</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4349-9c41851dd7e3859ab0f4dd5e113054ea1d8103e0b4991582a0563bd842151f993</citedby><cites>FETCH-LOGICAL-c4349-9c41851dd7e3859ab0f4dd5e113054ea1d8103e0b4991582a0563bd842151f993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schuster, M.</creatorcontrib><creatorcontrib>Rager, T.</creatorcontrib><creatorcontrib>Noda, A.</creatorcontrib><creatorcontrib>Kreuer, K. D.</creatorcontrib><creatorcontrib>Maier, J.</creatorcontrib><title>About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><addtitle>Fuel Cells</addtitle><description>Traditionally, sulfonated polymers are used as separator materials in PEM fuel cells. Based on recent experimental results on model compounds this paper critically discusses the potentials and limits of sulfonic acid and alternatively phosphonic acid and heterocycles (imidazole) as protogenic groups for PEM fuel cell electrolytes operating at intermediate temperatures (T &gt; 100 °C) and low humidification. Apart from transport properties, the stability and reactivity of mono‐functionalized model compounds (1‐heptylsulfonic acid (S‐C7), 1‐heptylphosphonic acid (P‐C7) and 2‐heptyl‐imidazole (I‐C7)) and a few diphosphonic acids are examined under wet and dry conditions. These are characterized with respect to their proton conductivity (ac impedance spectroscopy), proton diffusion coefficient (pulsed‐field gradient NMR), thermo‐oxidative stability (TGA under air), electrochemical stability (cyclic voltammetry) and their hydration behavior (TGA under water vapor). The sulfonic acid functionalized compound shows reasonable properties only when a minimum hydration level is guaranteed, while phosphonic acid functionalized compounds combine satisfactory proton conductivity even in the water‐free state at intermediate temperatures (T &lt; 200 °C), comparatively high thermo‐oxidative and electrochemical stability and electrochemical reactivity (hydrogen oxidation and oxygen reduction at platinum surfaces). The presence of water leads to moderate water uptake allowing for reasonable conductivities even at room temperature and prevents condensation reactions at higher temperature. The imidazole based system shows the largest electrochemical stability window, but its moderate proton conductivity and thermo‐oxidative stability and the very high overpotential for oxygen reduction on platinum turn out to be severe disadvantages for the envisaged application.</description><subject>Cyclo Voltammetry</subject><subject>Electrochemical Stability</subject><subject>Imidazole</subject><subject>PEM Fuel Cell</subject><subject>Phosphonic Acid</subject><subject>Proton Conductivity</subject><subject>Proton Diffusion</subject><subject>Sulfonic Acid</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkVFP2zAUhaOJSQO21z3fH0CK3dhpzFuVtaVbOyoB4tFy7RtqSOLITgTlx_JbltCp2tue7HN0z3evdKLoOyUjSsj4sug0jsaEMEIIF5-iU5pSHqcZZyfHP0u_RGchPBFCJ1nGTqP36dZ1LbQ7hHznrEZwxYfaeNe6R6ythoV3XQO2hs1sDbfYKK9a52GtWvRWlQGKXi3rXlVobO_CHVYN9lOdxwtYuRe47iprbLuHmw_fuvoKppB721qtSshd1VNtcPWw_rYrCzcsnmprLmCzc6HZHQ1QtYFlj1NvrkSYd7UeeKq0b2hg7QweeK6rTfgafS76C_Hb3_c8up_P7vLreHWzWObTVaxZwkQsNKMZp8ZMMMm4UFtSMGM4UpoQzlBRk1GSINkyISjPxorwNNmajI0pp4UQyXk0OnC1dyF4LGTjbaX8XlIih3bk0I48ttMHxCHwYkvc_2dazu_z2b_Z-JC1ocXXY1b5Z5lOkgmXD78X8sevef7zga4lS_4Avf-mnA</recordid><startdate>200508</startdate><enddate>200508</enddate><creator>Schuster, M.</creator><creator>Rager, T.</creator><creator>Noda, A.</creator><creator>Kreuer, K. D.</creator><creator>Maier, J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200508</creationdate><title>About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds</title><author>Schuster, M. ; Rager, T. ; Noda, A. ; Kreuer, K. D. ; Maier, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4349-9c41851dd7e3859ab0f4dd5e113054ea1d8103e0b4991582a0563bd842151f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cyclo Voltammetry</topic><topic>Electrochemical Stability</topic><topic>Imidazole</topic><topic>PEM Fuel Cell</topic><topic>Phosphonic Acid</topic><topic>Proton Conductivity</topic><topic>Proton Diffusion</topic><topic>Sulfonic Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schuster, M.</creatorcontrib><creatorcontrib>Rager, T.</creatorcontrib><creatorcontrib>Noda, A.</creatorcontrib><creatorcontrib>Kreuer, K. D.</creatorcontrib><creatorcontrib>Maier, J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schuster, M.</au><au>Rager, T.</au><au>Noda, A.</au><au>Kreuer, K. D.</au><au>Maier, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Fuel Cells</addtitle><date>2005-08</date><risdate>2005</risdate><volume>5</volume><issue>3</issue><spage>355</spage><epage>365</epage><pages>355-365</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>Traditionally, sulfonated polymers are used as separator materials in PEM fuel cells. Based on recent experimental results on model compounds this paper critically discusses the potentials and limits of sulfonic acid and alternatively phosphonic acid and heterocycles (imidazole) as protogenic groups for PEM fuel cell electrolytes operating at intermediate temperatures (T &gt; 100 °C) and low humidification. Apart from transport properties, the stability and reactivity of mono‐functionalized model compounds (1‐heptylsulfonic acid (S‐C7), 1‐heptylphosphonic acid (P‐C7) and 2‐heptyl‐imidazole (I‐C7)) and a few diphosphonic acids are examined under wet and dry conditions. These are characterized with respect to their proton conductivity (ac impedance spectroscopy), proton diffusion coefficient (pulsed‐field gradient NMR), thermo‐oxidative stability (TGA under air), electrochemical stability (cyclic voltammetry) and their hydration behavior (TGA under water vapor). The sulfonic acid functionalized compound shows reasonable properties only when a minimum hydration level is guaranteed, while phosphonic acid functionalized compounds combine satisfactory proton conductivity even in the water‐free state at intermediate temperatures (T &lt; 200 °C), comparatively high thermo‐oxidative and electrochemical stability and electrochemical reactivity (hydrogen oxidation and oxygen reduction at platinum surfaces). The presence of water leads to moderate water uptake allowing for reasonable conductivities even at room temperature and prevents condensation reactions at higher temperature. The imidazole based system shows the largest electrochemical stability window, but its moderate proton conductivity and thermo‐oxidative stability and the very high overpotential for oxygen reduction on platinum turn out to be severe disadvantages for the envisaged application.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/fuce.200400059</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-6846
ispartof Fuel cells (Weinheim an der Bergstrasse, Germany), 2005-08, Vol.5 (3), p.355-365
issn 1615-6846
1615-6854
language eng
recordid cdi_crossref_primary_10_1002_fuce_200400059
source Wiley
subjects Cyclo Voltammetry
Electrochemical Stability
Imidazole
PEM Fuel Cell
Phosphonic Acid
Proton Conductivity
Proton Diffusion
Sulfonic Acid
title About the Choice of the Protogenic Group in PEM Separator Materials for Intermediate Temperature, Low Humidity Operation: A Critical Comparison of Sulfonic Acid, Phosphonic Acid and Imidazole Functionalized Model Compounds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=About%20the%20Choice%20of%20the%20Protogenic%20Group%20in%20PEM%20Separator%20Materials%20for%20Intermediate%20Temperature,%20Low%20Humidity%20Operation:%20A%20Critical%20Comparison%20of%20Sulfonic%20Acid,%20Phosphonic%20Acid%20and%20Imidazole%20Functionalized%20Model%20Compounds&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Schuster,%20M.&rft.date=2005-08&rft.volume=5&rft.issue=3&rft.spage=355&rft.epage=365&rft.pages=355-365&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.200400059&rft_dat=%3Cistex_cross%3Eark_67375_WNG_DKFCJW1M_4%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4349-9c41851dd7e3859ab0f4dd5e113054ea1d8103e0b4991582a0563bd842151f993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true