Loading…
Transfer Thermodynamics of Protein in Denaturing and Stabilizing Media
Free energies of transfer (ΔGt) of RibonucleaseA (RNaseA) from water to aqueous solutions of urea (4 M, 6 M and 8 M), a protein denaturing solvent as well as ΔGt of RibonucleaseA, β‐Lactoglobulin, α‐Chymotripsin and ChymotrypsinogenA from water to aqueous glycerol (10%, 20%, 30% and 40%), a protein...
Saved in:
Published in: | Journal of the Chinese Chemical Society (Taipei) 2008-02, Vol.55 (1), p.17-22 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Free energies of transfer (ΔGt) of RibonucleaseA (RNaseA) from water to aqueous solutions of urea (4 M, 6 M and 8 M), a protein denaturing solvent as well as ΔGt of RibonucleaseA, β‐Lactoglobulin, α‐Chymotripsin and ChymotrypsinogenA from water to aqueous glycerol (10%, 20%, 30% and 40%), a protein stabilizing solvent has been dissected into cavity term [ΔGt(cav)] and interaction term [ΔGt(int)]. The interaction free energy includes all types of interactions like hard‐soft, hydrogen bonding, electrostatic, etc. The cavity forming free energies have been calculated using the standard version of scaled particle theory (SPT) with well‐reported SPT parameters. It has been found that transfer free energies of cavity terms ΔGt(cav) for native protein from water to urea‐water and water to aqueous glycerol follow almost opposite trends. This primarily indicates there may be some correlation between cavity creation energies and protein denaturing and stabilizing ability of a solvent. The results are in agreement with those obtained from preferential binding coefficient studies in these media.
Free energies of transfer (ΔGt) of RibonucleaseA (RNaseA) from water to aqueous solutions of urea (4 M, 6 M and 8 M), a protein denaturing solvent as well as ΔGt of RibonucleaseA, β‐Lactoglobulin, α‐Chymotripsin and ChymotrypsinogenA from water to aqueous glycerol (10%, 20%, 30% and 40%), a protein stabilizing solvent has been dissected into cavity term [ΔGt(cav)] and interaction term [ΔGt(int)]. The interaction free energy includes all types of interactions like hard‐soft, hydrogen bonding, electrostatic, etc. The cavity forming free energies have been calculated using the standard version of scaled particle theory (SPT) with well‐reported SPT parameters. It has been found that transfer free energies of cavity terms ΔGt(cav) for native protein from water to urea‐water and water to aqueous glycerol follow almost opposite trends. This primarily indicates there may be some correlation between cavity creation energies and protein denaturing and stabilizing ability of a solvent. The results are in agreement with those obtained from preferential binding coefficient studies in these media. |
---|---|
ISSN: | 0009-4536 2192-6549 |
DOI: | 10.1002/jccs.200800005 |