Loading…
The Hamilton-Waterloo problem for cycle sizes 3 and 4
The Hamilton–Waterloo problem seeks a resolvable decomposition of the complete graph Kn, or the complete graph minus a 1‐factor as appropriate, into cycles such that each resolution class contains only cycles of specified sizes. We completely solve the case in which the resolution classes are either...
Saved in:
Published in: | Journal of combinatorial designs 2009-07, Vol.17 (4), p.342-352 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Hamilton–Waterloo problem seeks a resolvable decomposition of the complete graph Kn, or the complete graph minus a 1‐factor as appropriate, into cycles such that each resolution class contains only cycles of specified sizes. We completely solve the case in which the resolution classes are either all 3‐cycles or 4‐cycles, with a few possible exceptions when n=24 and 48. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 342–352, 2009 |
---|---|
ISSN: | 1063-8539 1520-6610 |
DOI: | 10.1002/jcd.20219 |