Loading…
Relative difference sets, graphs and inequivalence of functions between groups
For cryptographic purposes, we want to find functions with both low differential uniformity and dissimilarity to all linear functions and to know when such functions are essentially different. For vectorial Boolean functions, extended affine equivalence and the coarser Carlet–Charpin–Zinoviev (CCZ)...
Saved in:
Published in: | Journal of combinatorial designs 2010-07, Vol.18 (4), p.260-273 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For cryptographic purposes, we want to find functions with both low differential uniformity and dissimilarity to all linear functions and to know when such functions are essentially different. For vectorial Boolean functions, extended affine equivalence and the coarser Carlet–Charpin–Zinoviev (CCZ) equivalence are both used to distinguish between nonlinear functions. It remains hard to tell when CCZ equivalent functions are EA‐inequivalent. This paper presents a framework for solving this problem in full generality, for functions between arbitrary finite groups. This common framework is based on relative difference sets (RDSs). The CCZ and EA equivalence classes of perfect nonlinear (PN) functions are each derived, by quite different processes, from equivalence classes of splitting semiregular RDSs. By generalizing these processes, we obtain a much strengthened formula for all the graph equivalences which define the EA equivalence class of a given function, amongst those which define its CCZ equivalence class. © 2010 Wiley Periodicals, Inc. J Combin Designs 18: 260–273, 2010 |
---|---|
ISSN: | 1063-8539 1520-6610 |
DOI: | 10.1002/jcd.20254 |