Loading…
Solution of a conjecture of Tewes and Volkmann regarding extendable cycles in in-tournaments
A directed cycle C of a digraph D is extendable if there exists a directed cycle C′ in D that contains all vertices of C and an additional one. In 1989, Hendry defined a digraph D to be cycle extendable if it contains a directed cycle and every non‐Hamiltonian directed cycle of D is extendable. Furt...
Saved in:
Published in: | Journal of graph theory 2010-01, Vol.63 (1), p.82-92 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A directed cycle C of a digraph D is extendable if there exists a directed cycle C′ in D that contains all vertices of C and an additional one. In 1989, Hendry defined a digraph D to be cycle extendable if it contains a directed cycle and every non‐Hamiltonian directed cycle of D is extendable. Furthermore, D is fully cycle extendable if it is cycle extendable and every vertex of D belongs to a directed cycle of length three. In 2001, Tewes and Volkmann extended these definitions in considering only directed cycles whose length exceed a certain bound 3≤k |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.20408 |