Loading…
Proof of a conjecture on fractional Ramsey numbers
Jacobson, Levin, and Scheinerman introduced the fractional Ramsey function rf (a1, a2, …, ak) as an extension of the classical definition for Ramsey numbers. They determined an exact formula for the fractional Ramsey function for the case k=2. In this article, we answer an open problem by determinin...
Saved in:
Published in: | Journal of graph theory 2010-02, Vol.63 (2), p.164-178 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Jacobson, Levin, and Scheinerman introduced the fractional Ramsey function rf (a1, a2, …, ak) as an extension of the classical definition for Ramsey numbers. They determined an exact formula for the fractional Ramsey function for the case k=2. In this article, we answer an open problem by determining an explicit formula for the general case k>2 by constructing an infinite family of circulant graphs for which the independence numbers can be computed explicitly. This construction gives us two further results: a new (infinite) family of star extremal graphs which are a superset of many of the families currently known in the literature, and a broad generalization of known results on the chromatic number of integer distance graphs. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 164–178, 2010 |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.20416 |