Loading…
On characterizing Vizing's edge colouring bound
We consider multigraphs G for which equality holds in Vizing's classical edge colouring bound χ′(G)≤Δ + µ, where Δ denotes the maximum degree and µ denotes the maximum edge multiplicity of G. We show that if µ is bounded below by a logarithmic function of Δ, then G attains Vizing's bound i...
Saved in:
Published in: | Journal of graph theory 2012-02, Vol.69 (2), p.160-168 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider multigraphs G for which equality holds in Vizing's classical edge colouring bound χ′(G)≤Δ + µ, where Δ denotes the maximum degree and µ denotes the maximum edge multiplicity of G. We show that if µ is bounded below by a logarithmic function of Δ, then G attains Vizing's bound if and only if there exists an odd subset S⊆V(G) with |S|≥3, such that |E[S]|>((|S| − 1)/2)(Δ + µ − 1). The famous Goldberg–Seymour conjecture states that this should hold for all µ≥2. We also prove a similar result concerning the edge colouring bound χ′(G)≤Δ + ⌈µ/⌊g/2⌋⌉, due to Steffen (here g denotes the girth of the underlying graph). Finally we give a general approximation towards the Goldberg‐Seymour conjecture in terms of Δ and µ. © 2011 Wiley Periodicals, Inc. J Graph Theory 69:160‐168, 2012 |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.20571 |