Loading…

Dihydrobenzoxazines and tetrahydroquinoxalines by a tandem reduction-reductive amination reaction

A tandem reduction‐reductive amination reaction has been applied to the synthesis of 3,4‐dihydro‐2H‐1,4‐benzoxazines and 1‐acetyl‐1,2,3,4‐tetrahydroquinoxalines. The nitroketones required for the benzoxazine ring closures were prepared by (A) alkylation of the anion derived from 2‐nitrophenol with a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of heterocyclic chemistry 2003-11, Vol.40 (6), p.1031-1039
Main Authors: Bunce, Richard A., Herron, Derrick M., Hale, Lu Y.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A tandem reduction‐reductive amination reaction has been applied to the synthesis of 3,4‐dihydro‐2H‐1,4‐benzoxazines and 1‐acetyl‐1,2,3,4‐tetrahydroquinoxalines. The nitroketones required for the benzoxazine ring closures were prepared by (A) alkylation of the anion derived from 2‐nitrophenol with an allylic halide or (B) nucleophilic aromatic substitution of an allylic alkoxide on 2‐fluoro‐1‐nitrobenzene followed by ozonolysis. Precursors for the quinoxalines were prepared by alkylation of the anion of 2‐nitroacetanilide with an allylic halide followed by ozonolysis. Catalytic hydrogenation of the nitroketones using 5% palladium‐on‐carbon in methanol then gave the target heterocycles by a reduction‐reductive amination sequence. The N‐methyl derivatives for both ring systems were easily prepared by adding 5‐10 equivalents of aqueous formaldehyde prior to the reduction. The dihydrobenzoxazines were isolated in high yield following purification by chromatographic methods; tetrahydroquinoxalines were isolated in a similar manner and possessed differentiated functionality on the two nitrogens.
ISSN:0022-152X
1943-5193
DOI:10.1002/jhet.5570400611