Loading…
First characterization of a newly emerging phytopathogen, Sclerotinia sclerotiorum causing white mold in pea
Pea (Pisum sativum L.) is of global importance as a food crop for its edible pod and seed. A new disease causing the tan to light brown blighted stems and pods has occurred in pea (P. sativum L.) plants in Chapainawabganj district, Bangladesh. A fungus with white‐appressed mycelia and large scleroti...
Saved in:
Published in: | Journal of basic microbiology 2021-10, Vol.61 (10), p.923-939 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Pea (Pisum sativum L.) is of global importance as a food crop for its edible pod and seed. A new disease causing the tan to light brown blighted stems and pods has occurred in pea (P. sativum L.) plants in Chapainawabganj district, Bangladesh. A fungus with white‐appressed mycelia and large sclerotia was consistently isolated from symptomatic tissues. The fungus formed funnel‐shaped apothecia with sac‐like ascus and endogenously formed ascospores. Healthy pea plants inoculated with the fungus produced typical white mold symptoms. The internal transcribed spacer sequences of the fungus were 100% similar to Sclerotinia sclerotiorum, considering the fungus to be the causative agent of white mold disease in pea, which was the first record in Bangladesh. Mycelial growth and sclerotial development of S. sclerotiorum were favored at 20°C and pH 5.0. Glucose was the best carbon source to support hyphal growth and sclerotia formation. Bavistin and Amistar Top inhibited the radial growth of the fungus completely at the lowest concentration. In planta, foliar application of Amistar Top showed the considerable potential to control the disease at 1.0% concentration until 7 days after spraying, while Bavistin prevented infection significantly until 15 days after spraying. A large majority (70.93%) of genotypes, including tested released pea cultivars, were susceptible, while six genotypes (6.98%) appeared resistant to the disease. These results on identification, characterization, host resistance, and fungicidal control of white mold could be valuable to achieve improved management of a new disease problem for pea cultivation. |
---|---|
ISSN: | 0233-111X 1521-4028 |
DOI: | 10.1002/jobm.202100223 |