Loading…
On some nonself mappings
Let X be a Banach space, let K be a non–empty closed subset of X and let T : K → X be a non–self mapping. The main result of this paper is that if T satisfies the contractive–type condition (1.1) below and maps ∂K (∂K the boundary of K) into K then T has a unique fixed point in K.
Saved in:
Published in: | Mathematische Nachrichten 2003-03, Vol.251 (1), p.28-33 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let X be a Banach space, let K be a non–empty closed subset of X and let T : K → X be a non–self mapping. The main result of this paper is that if T satisfies the contractive–type condition (1.1) below and maps ∂K (∂K the boundary of K) into K then T has a unique fixed point in K. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.200310028 |