Loading…
On some nonself mappings
Let X be a Banach space, let K be a non–empty closed subset of X and let T : K → X be a non–self mapping. The main result of this paper is that if T satisfies the contractive–type condition (1.1) below and maps ∂K (∂K the boundary of K) into K then T has a unique fixed point in K.
Saved in:
Published in: | Mathematische Nachrichten 2003-03, Vol.251 (1), p.28-33 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3268-866166944b78895930d262ead0967d001e867a1f068a9516bfed30754c3d8e0b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3268-866166944b78895930d262ead0967d001e867a1f068a9516bfed30754c3d8e0b3 |
container_end_page | 33 |
container_issue | 1 |
container_start_page | 28 |
container_title | Mathematische Nachrichten |
container_volume | 251 |
creator | Ćirić, LJ. B. Ume, J. S. Khan, M. S. Pathak, H. K. |
description | Let X be a Banach space, let K be a non–empty closed subset of X and let T : K → X be a non–self mapping. The main result of this paper is that if T satisfies the contractive–type condition (1.1) below and maps ∂K (∂K the boundary of K) into K then T has a unique fixed point in K. |
doi_str_mv | 10.1002/mana.200310028 |
format | article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_mana_200310028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_DK9SZS9C_T</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3268-866166944b78895930d262ead0967d001e867a1f068a9516bfed30754c3d8e0b3</originalsourceid><addsrcrecordid>eNqFj0tLxDAUhYMoWEe34rJ_IONN0rzclaqjOM4sZkRxE9I2lWpfNILOv7elMuDK1eEe7nfgQ-icwJwA0MvaNnZOAdh4qQMUEE4ppoKIQxQMFcdcRS_H6MT7dwDQWooAXayb0Le1C5u28a4qwtp2Xdm8-VN0VNjKu7PfnKGn25ttcoeX68V9Ei9xxqhQWIlhX-goSqVSmmsGORXU2Ry0kDkAcUpISwoQympORFq4nIHkUcZy5SBlMzSfdrO-9b53hen6srb9zhAwo4kZvczeawCuJuCrrNzun2_zGK_iPzCe4NJ_uu89bPsPIyST3DyvFub6QW9eNzoxW_YD3jFepw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On some nonself mappings</title><source>Wiley</source><creator>Ćirić, LJ. B. ; Ume, J. S. ; Khan, M. S. ; Pathak, H. K.</creator><creatorcontrib>Ćirić, LJ. B. ; Ume, J. S. ; Khan, M. S. ; Pathak, H. K.</creatorcontrib><description>Let X be a Banach space, let K be a non–empty closed subset of X and let T : K → X be a non–self mapping. The main result of this paper is that if T satisfies the contractive–type condition (1.1) below and maps ∂K (∂K the boundary of K) into K then T has a unique fixed point in K.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.200310028</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Banach space ; Banach space, nonself–mapping, fixed point ; fixed point ; nonself-mapping</subject><ispartof>Mathematische Nachrichten, 2003-03, Vol.251 (1), p.28-33</ispartof><rights>2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3268-866166944b78895930d262ead0967d001e867a1f068a9516bfed30754c3d8e0b3</citedby><cites>FETCH-LOGICAL-c3268-866166944b78895930d262ead0967d001e867a1f068a9516bfed30754c3d8e0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ćirić, LJ. B.</creatorcontrib><creatorcontrib>Ume, J. S.</creatorcontrib><creatorcontrib>Khan, M. S.</creatorcontrib><creatorcontrib>Pathak, H. K.</creatorcontrib><title>On some nonself mappings</title><title>Mathematische Nachrichten</title><addtitle>Math. Nachr</addtitle><description>Let X be a Banach space, let K be a non–empty closed subset of X and let T : K → X be a non–self mapping. The main result of this paper is that if T satisfies the contractive–type condition (1.1) below and maps ∂K (∂K the boundary of K) into K then T has a unique fixed point in K.</description><subject>Banach space</subject><subject>Banach space, nonself–mapping, fixed point</subject><subject>fixed point</subject><subject>nonself-mapping</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFj0tLxDAUhYMoWEe34rJ_IONN0rzclaqjOM4sZkRxE9I2lWpfNILOv7elMuDK1eEe7nfgQ-icwJwA0MvaNnZOAdh4qQMUEE4ppoKIQxQMFcdcRS_H6MT7dwDQWooAXayb0Le1C5u28a4qwtp2Xdm8-VN0VNjKu7PfnKGn25ttcoeX68V9Ei9xxqhQWIlhX-goSqVSmmsGORXU2Ry0kDkAcUpISwoQympORFq4nIHkUcZy5SBlMzSfdrO-9b53hen6srb9zhAwo4kZvczeawCuJuCrrNzun2_zGK_iPzCe4NJ_uu89bPsPIyST3DyvFub6QW9eNzoxW_YD3jFepw</recordid><startdate>200303</startdate><enddate>200303</enddate><creator>Ćirić, LJ. B.</creator><creator>Ume, J. S.</creator><creator>Khan, M. S.</creator><creator>Pathak, H. K.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200303</creationdate><title>On some nonself mappings</title><author>Ćirić, LJ. B. ; Ume, J. S. ; Khan, M. S. ; Pathak, H. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3268-866166944b78895930d262ead0967d001e867a1f068a9516bfed30754c3d8e0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Banach space</topic><topic>Banach space, nonself–mapping, fixed point</topic><topic>fixed point</topic><topic>nonself-mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ćirić, LJ. B.</creatorcontrib><creatorcontrib>Ume, J. S.</creatorcontrib><creatorcontrib>Khan, M. S.</creatorcontrib><creatorcontrib>Pathak, H. K.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ćirić, LJ. B.</au><au>Ume, J. S.</au><au>Khan, M. S.</au><au>Pathak, H. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On some nonself mappings</atitle><jtitle>Mathematische Nachrichten</jtitle><addtitle>Math. Nachr</addtitle><date>2003-03</date><risdate>2003</risdate><volume>251</volume><issue>1</issue><spage>28</spage><epage>33</epage><pages>28-33</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>Let X be a Banach space, let K be a non–empty closed subset of X and let T : K → X be a non–self mapping. The main result of this paper is that if T satisfies the contractive–type condition (1.1) below and maps ∂K (∂K the boundary of K) into K then T has a unique fixed point in K.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/mana.200310028</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2003-03, Vol.251 (1), p.28-33 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_crossref_primary_10_1002_mana_200310028 |
source | Wiley |
subjects | Banach space Banach space, nonself–mapping, fixed point fixed point nonself-mapping |
title | On some nonself mappings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20some%20nonself%20mappings&rft.jtitle=Mathematische%20Nachrichten&rft.au=%C4%86iri%C4%87,%20LJ.%20B.&rft.date=2003-03&rft.volume=251&rft.issue=1&rft.spage=28&rft.epage=33&rft.pages=28-33&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.200310028&rft_dat=%3Cistex_cross%3Eark_67375_WNG_DK9SZS9C_T%3C/istex_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3268-866166944b78895930d262ead0967d001e867a1f068a9516bfed30754c3d8e0b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |