Loading…
Coherent state transforms attached to generalized Bargmann spaces on the complex plane
We construct a family of coherent states transforms attached to generalized Bargmann spaces [C. R. Acad. Sci. Paris, t. 325, 1997] in the complex plane. This constitutes another way of obtaining the kernel of an isometric operator linking the space of square integrable functions on the real line wit...
Saved in:
Published in: | Mathematische Nachrichten 2011-10, Vol.284 (14-15), p.1948-1954 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We construct a family of coherent states transforms attached to generalized Bargmann spaces [C. R. Acad. Sci. Paris, t. 325, 1997] in the complex plane. This constitutes another way of obtaining the kernel of an isometric operator linking the space of square integrable functions on the real line with the true‐poly‐Fock spaces [Oper. Theory, Adv. Appl. v. 117, 2000]. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.200910191 |