Loading…

A geometric property in and its applications

In this work, we initiate the study of the geometry of the variable exponent sequence space when . In 1931 Orlicz introduced the variable exponent sequence spaces while studying lacunary Fourier series. Since then, much progress has been made in the understanding of these spaces and of their continu...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Nachrichten 2019-09, Vol.292 (9), p.1931-1940
Main Authors: Bachar, M., Khamsi, M. A., Mendez, O., Bounkhel, M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we initiate the study of the geometry of the variable exponent sequence space when . In 1931 Orlicz introduced the variable exponent sequence spaces while studying lacunary Fourier series. Since then, much progress has been made in the understanding of these spaces and of their continuous counterpart. In particular, it is well known that is uniformly convex if and only if the exponent is bounded away from 1 and infinity. The geometry of when either or remains largely ill‐understood. We state and prove a modular version of the geometric property of when , known as uniform convexity in every direction. We present specific applications to fixed point theory. In particular we obtain an analogue to the classical Kirk's fixed point theorem in when .
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.201800049