Loading…

A concise quaternion geometry of rotations

This communication compiles propositions concerning the spherical geometry of rotations when represented by unit quaternions. The propositions are thought to establish a two‐way correspondence between geometrical objects in the space of real unit quaternions representing rotations and geometrical ob...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2005-01, Vol.28 (1), p.101-126
Main Authors: Meister, L., Schaeben, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This communication compiles propositions concerning the spherical geometry of rotations when represented by unit quaternions. The propositions are thought to establish a two‐way correspondence between geometrical objects in the space of real unit quaternions representing rotations and geometrical objects constituted by directions in the three‐dimensional space subjected to these rotations. In this way a purely geometrical proof of the spherical Ásgeirsson's mean value theorem and a geometrical interpretation of integrals related to the spherical Radon transform of a probability density functions of unit quaternions are accomplished. Copyright © 2004 John Wiley & Sons, Ltd.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.560