Loading…
Harmonic and refined Rayleigh-Ritz for the polynomial eigenvalue problem
After reviewing the harmonic Rayleigh–Ritz approach for the standard and generalized eigenvalue problem, we discuss several extraction processes for subspace methods for the polynomial eigenvalue problem. We generalize the harmonic and refined Rayleigh–Ritz approaches which lead to new approaches to...
Saved in:
Published in: | Numerical linear algebra with applications 2008-02, Vol.15 (1), p.35-54 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | After reviewing the harmonic Rayleigh–Ritz approach for the standard and generalized eigenvalue problem, we discuss several extraction processes for subspace methods for the polynomial eigenvalue problem. We generalize the harmonic and refined Rayleigh–Ritz approaches which lead to new approaches to extract promising approximate eigenpairs from a search space. We give theoretical as well as numerical results of the methods. In addition, we study the convergence of the Jacobi–Davidson method for polynomial eigenvalue problems with exact and inexact linear solves and discuss several algorithmic details. Copyright © 2008 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 1070-5325 1099-1506 |
DOI: | 10.1002/nla.562 |