Loading…

Anisotropic mixed finite elements for elasticity

SUMMARY In this paper, we present a family of mixed finite elements, which are suitable for the discretization of slim domains. The displacement space is chosen as Nédélec's space of tangential continuous elements, whereas the stress is approximated by normal–normal continuous symmetric tensor‐...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2012-04, Vol.90 (2), p.196-217
Main Authors: Pechstein, A., Schöberl, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SUMMARY In this paper, we present a family of mixed finite elements, which are suitable for the discretization of slim domains. The displacement space is chosen as Nédélec's space of tangential continuous elements, whereas the stress is approximated by normal–normal continuous symmetric tensor‐valued finite elements. We show stability of the system on a slim domain discretized by a tensor product mesh, where the constant of stability does not depend on the aspect ratio of the discretization. We give interpolation operators for the finite element spaces, and thereby obtain optimal order a priori error estimates for the approximate solution. All estimates are independent of the aspect ratio of the finite elements. Copyright © 2011 John Wiley & Sons, Ltd.
ISSN:0029-5981
1097-0207
DOI:10.1002/nme.3319