Loading…
Specific reversible melting of polymers
Temperature‐modulated differential scanning calorimetry can detect a certain amount of reversible latent heat in flexible macromolecules. In short, one can identify a reversible melting in such polymers earlier thought to exhibit only fully irreversible crystallization and melting. Details of the re...
Saved in:
Published in: | Journal of polymer science. Part B, Polymer physics Polymer physics, 2003-09, Vol.41 (17), p.2039-2051 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Temperature‐modulated differential scanning calorimetry can detect a certain amount of reversible latent heat in flexible macromolecules. In short, one can identify a reversible melting in such polymers earlier thought to exhibit only fully irreversible crystallization and melting. Details of the reversible melting of isotactic polypropylene and ethylene‐1‐octene copolymers of low and medium densities have newly been measured and linked to the crystallization, annealing, or melting temperature. It is possible to assign the experimental reversibility of melting to specific crystal fractions that ultimately melt irreversibly at higher temperatures; that is, it is suggested that reversible melting mainly occurs only between the temperatures of their formation and their zero‐entropy‐production melting temperature, at which they change to a melt of the same degree of metastability. This is supported by the almost complete absence of reversibility below the temperature of crystal formation and the observation of a distinct relationship between the amount of irreversibly by annealing reorganized material and reversibility in the case of isotactic polypropylene. A given crystal fraction, characterized by its formation temperature and zero‐entropy‐production melting temperature, has a specific reversibility of the melt‐to‐crystal transition, which is represented by the ratio of the reversible latent heat to the total enthalpy change when the crystal fraction of interest ultimately melts. This specific reversibility is, for ethylene‐1‐octene copolymers, at least 25% at temperatures in the primary crystallization range, and this indicates that the reversible contribution to the total of the melting processes is much larger than expected from simple calculations by the excess apparent reversible heat capacity being referred to the heat of fusion of the polymer, as is commonly done. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2039–2051, 2003 |
---|---|
ISSN: | 0887-6266 1099-0488 |
DOI: | 10.1002/polb.10573 |