Loading…
Volume-Dependent Self-Ignition Temperatures for Explosive Materials
In this paper the differential equation of thermal explosion in the steady‐state approximation is established and solved. This solution is based on Fourier’s heat equation along with the Arrhenius heat source. The theory allows to draw conclusions on the thermal behaviour of any substance. The criti...
Saved in:
Published in: | Propellants, explosives, pyrotechnics explosives, pyrotechnics, 2012-02, Vol.37 (1), p.107-115 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper the differential equation of thermal explosion in the steady‐state approximation is established and solved. This solution is based on Fourier’s heat equation along with the Arrhenius heat source. The theory allows to draw conclusions on the thermal behaviour of any substance. The critical ambient temperature appears as a function of the apparent activation energy, Arrhenius temperature rate, temperature diffusivity, and the volume. The thermal stability of a chemically reactive material may be determined by means of these dependencies. Different volumes of five explosive materials were exposed to hot storage tests. These experiments generate appropriate kinetic parameters for these materials that are compared with known values from literature. Once these parameters are known, self‐ignition temperatures can be calculated for any arbitrary volume and boundary conditions. This is of major importance in the safe transportation and storage of explosives, munitions, and weapons. |
---|---|
ISSN: | 0721-3115 1521-4087 |
DOI: | 10.1002/prep.201100007 |