Loading…
Randomized greedy matching. II
We consider the following randomized algorithm for finding a matching M in an arbitrary graph G = (V, E). Repeatedly, choose a random vertex u, then a random neighbour v of u. Add edge {u, v} to M and delete vertices u, v from G along with any vertices that become isolated. Our main result is that t...
Saved in:
Published in: | Random structures & algorithms 1995-01, Vol.6 (1), p.55-73 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider the following randomized algorithm for finding a matching M in an arbitrary graph G = (V, E). Repeatedly, choose a random vertex u, then a random neighbour v of u. Add edge {u, v} to M and delete vertices u, v from G along with any vertices that become isolated. Our main result is that there exists a positive constant ϵ such that the expected ratio of the size of the matching produced to the size of largest matching in G is at least 0.5 + ϵ. We obtain stronger results for sparse graphs and trees and consider extensions to hypergraphs. |
---|---|
ISSN: | 1042-9832 1098-2418 |
DOI: | 10.1002/rsa.3240060107 |