Loading…
Global Existence for a Parabolic Chemotaxis Model with Prevention of Overcrowding
In this paper we study a version of the Keller–Segel model where the chemotactic cross-diffusion depends on both the external signal and the local population density. A parabolic quasi-linear strongly coupled system follows. By incorporation of a population-sensing (or “quorum-sensing”) mechanism, w...
Saved in:
Published in: | Advances in applied mathematics 2001-05, Vol.26 (4), p.280-301 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper we study a version of the Keller–Segel model where the chemotactic cross-diffusion depends on both the external signal and the local population density. A parabolic quasi-linear strongly coupled system follows. By incorporation of a population-sensing (or “quorum-sensing”) mechanism, we assume that the chemotactic response is switched off at high cell densities. The response to high population densities prevents overcrowding, and we prove local and global existence in time of classical solutions. Numerical simulations show interesting phenomena of pattern formation and formation of stable aggregates. We discuss the results with respect to previous analytical results on the Keller–Segel model. |
---|---|
ISSN: | 0196-8858 1090-2074 |
DOI: | 10.1006/aama.2001.0721 |