Loading…

Role of the Dlx Homeobox Genes in Proximodistal Patterning of the Branchial Arches: Mutations of Dlx-1, Dlx-2, and Dlx-1 and -2 Alter Morphogenesis of Proximal Skeletal and Soft Tissue Structures Derived from the First and Second Arches

The Dlx homeobox gene family is expressed in a complex pattern within the embryonic craniofacial ectoderm and ectomesenchyme. A previous study established that Dlx-2 is essential for development of proximal regions of the murine first and second branchial arches. Here we describe the craniofacial ph...

Full description

Saved in:
Bibliographic Details
Published in:Developmental biology 1997-05, Vol.185 (2), p.165-184
Main Authors: Qiu, Mengsheng, Bulfone, Alessandro, Ghattas, Ingrid, Meneses, Juanito J., Christensen, Lars, Sharpe, Paul T., Presley, Robert, Pedersen, Roger A., Rubenstein, John L.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Dlx homeobox gene family is expressed in a complex pattern within the embryonic craniofacial ectoderm and ectomesenchyme. A previous study established that Dlx-2 is essential for development of proximal regions of the murine first and second branchial arches. Here we describe the craniofacial phenotype of mice with mutations in Dlx-1 and Dlx-1 and -2. The skeletal and soft tissue analyses of mice with Dlx-1 and Dlx-1 and -2 mutations provide additional evidence that the Dlx genes regulate proximodistal patterning of the branchial arches. This analysis also elucidates distinct and overlapping roles for Dlx-1 and Dlx-2 in craniofacial development. Furthermore, mice lacking both Dlx-1 and -2 have unique abnormalities, including the absence of maxillary molars. Dlx-1 and -2 are expressed in the proximal and distal first and second arches, yet only the proximal regions are abnormal. The nested expression patterns of Dlx-1, -2, -3, -5, and -6 provide evidence for a model that predicts the region-specific requirements for each gene. Finally, the Dlx-2 and Dlx-1 and -2 mutants have ectopic skull components that resemble bones and cartilages found in phylogenetically more primitive vertebrates.
ISSN:0012-1606
1095-564X
DOI:10.1006/dbio.1997.8556