Loading…
The Odd Girth of the Generalised Kneser Graph
LetX={1,2,..., n}be a set ofnelements and letX(r)be the collection of all the subsets ofXcontaining preciselyrelements. Then the generalised Kneser graphK(n,r,s)(when2r-s≤n)is the graph with vertex setX(r)and edgesABforA,B∈X(r)with ‖A∩B‖≤s.Here we show that the odd girth of the generalised Kneser gr...
Saved in:
Published in: | European journal of combinatorics 1997-08, Vol.18 (6), p.607-611 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | LetX={1,2,..., n}be a set ofnelements and letX(r)be the collection of all the subsets ofXcontaining preciselyrelements. Then the generalised Kneser graphK(n,r,s)(when2r-s≤n)is the graph with vertex setX(r)and edgesABforA,B∈X(r)with ‖A∩B‖≤s.Here we show that the odd girth of the generalised Kneser graphK(n,r, s)is
2⌈(r − s)/[n − 2(r − s)]⌉+1
provided thatnis large enough compared withrands. |
---|---|
ISSN: | 0195-6698 1095-9971 |
DOI: | 10.1006/eujc.1996.0122 |