Loading…
The Odd Girth of the Generalised Kneser Graph
LetX={1,2,..., n}be a set ofnelements and letX(r)be the collection of all the subsets ofXcontaining preciselyrelements. Then the generalised Kneser graphK(n,r,s)(when2r-s≤n)is the graph with vertex setX(r)and edgesABforA,B∈X(r)with ‖A∩B‖≤s.Here we show that the odd girth of the generalised Kneser gr...
Saved in:
Published in: | European journal of combinatorics 1997-08, Vol.18 (6), p.607-611 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-9166b26d49618eecfef705abe92974c0df9774a48efaa404400c5a2bc4d89bd73 |
---|---|
cites | |
container_end_page | 611 |
container_issue | 6 |
container_start_page | 607 |
container_title | European journal of combinatorics |
container_volume | 18 |
creator | Denley, Tristan |
description | LetX={1,2,..., n}be a set ofnelements and letX(r)be the collection of all the subsets ofXcontaining preciselyrelements. Then the generalised Kneser graphK(n,r,s)(when2r-s≤n)is the graph with vertex setX(r)and edgesABforA,B∈X(r)with ‖A∩B‖≤s.Here we show that the odd girth of the generalised Kneser graphK(n,r, s)is
2⌈(r − s)/[n − 2(r − s)]⌉+1
provided thatnis large enough compared withrands. |
doi_str_mv | 10.1006/eujc.1996.0122 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_eujc_1996_0122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0195669896901225</els_id><sourcerecordid>S0195669896901225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-9166b26d49618eecfef705abe92974c0df9774a48efaa404400c5a2bc4d89bd73</originalsourceid><addsrcrecordid>eNp1j01LxDAURYMoOI5uXfcPtL6kaT6WMmgVB2YzrkOavNAMYzskVfDf2zJuZ_UuD87lHkIeKVQUQDzh98FVVGtRAWXsiqwo6KbUWtJrsgI6ZyG0uiV3OR8AKG3qekXKfY_FzvuijWnqizEU0_xoccBkjzGjLz4GzJiKNtlTf09ugj1mfPi_a_L5-rLfvJXbXfu-ed6WrmZqKjUVomPCcy2oQnQBg4TGdqiZltyBD1pKbrnCYC0HzgFcY1nnuFe687Jek-rc69KYc8JgTil-2fRrKJhF1iyyZpE1i-wMqDOA86qfiMlkF3Fw6GNCNxk_xkvoH-UTWhs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Odd Girth of the Generalised Kneser Graph</title><source>ScienceDirect Freedom Collection</source><creator>Denley, Tristan</creator><creatorcontrib>Denley, Tristan</creatorcontrib><description>LetX={1,2,..., n}be a set ofnelements and letX(r)be the collection of all the subsets ofXcontaining preciselyrelements. Then the generalised Kneser graphK(n,r,s)(when2r-s≤n)is the graph with vertex setX(r)and edgesABforA,B∈X(r)with ‖A∩B‖≤s.Here we show that the odd girth of the generalised Kneser graphK(n,r, s)is
2⌈(r − s)/[n − 2(r − s)]⌉+1
provided thatnis large enough compared withrands.</description><identifier>ISSN: 0195-6698</identifier><identifier>EISSN: 1095-9971</identifier><identifier>DOI: 10.1006/eujc.1996.0122</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>European journal of combinatorics, 1997-08, Vol.18 (6), p.607-611</ispartof><rights>1997 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-9166b26d49618eecfef705abe92974c0df9774a48efaa404400c5a2bc4d89bd73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Denley, Tristan</creatorcontrib><title>The Odd Girth of the Generalised Kneser Graph</title><title>European journal of combinatorics</title><description>LetX={1,2,..., n}be a set ofnelements and letX(r)be the collection of all the subsets ofXcontaining preciselyrelements. Then the generalised Kneser graphK(n,r,s)(when2r-s≤n)is the graph with vertex setX(r)and edgesABforA,B∈X(r)with ‖A∩B‖≤s.Here we show that the odd girth of the generalised Kneser graphK(n,r, s)is
2⌈(r − s)/[n − 2(r − s)]⌉+1
provided thatnis large enough compared withrands.</description><issn>0195-6698</issn><issn>1095-9971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAURYMoOI5uXfcPtL6kaT6WMmgVB2YzrkOavNAMYzskVfDf2zJuZ_UuD87lHkIeKVQUQDzh98FVVGtRAWXsiqwo6KbUWtJrsgI6ZyG0uiV3OR8AKG3qekXKfY_FzvuijWnqizEU0_xoccBkjzGjLz4GzJiKNtlTf09ugj1mfPi_a_L5-rLfvJXbXfu-ed6WrmZqKjUVomPCcy2oQnQBg4TGdqiZltyBD1pKbrnCYC0HzgFcY1nnuFe687Jek-rc69KYc8JgTil-2fRrKJhF1iyyZpE1i-wMqDOA86qfiMlkF3Fw6GNCNxk_xkvoH-UTWhs</recordid><startdate>19970801</startdate><enddate>19970801</enddate><creator>Denley, Tristan</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970801</creationdate><title>The Odd Girth of the Generalised Kneser Graph</title><author>Denley, Tristan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-9166b26d49618eecfef705abe92974c0df9774a48efaa404400c5a2bc4d89bd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denley, Tristan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>European journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denley, Tristan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Odd Girth of the Generalised Kneser Graph</atitle><jtitle>European journal of combinatorics</jtitle><date>1997-08-01</date><risdate>1997</risdate><volume>18</volume><issue>6</issue><spage>607</spage><epage>611</epage><pages>607-611</pages><issn>0195-6698</issn><eissn>1095-9971</eissn><abstract>LetX={1,2,..., n}be a set ofnelements and letX(r)be the collection of all the subsets ofXcontaining preciselyrelements. Then the generalised Kneser graphK(n,r,s)(when2r-s≤n)is the graph with vertex setX(r)and edgesABforA,B∈X(r)with ‖A∩B‖≤s.Here we show that the odd girth of the generalised Kneser graphK(n,r, s)is
2⌈(r − s)/[n − 2(r − s)]⌉+1
provided thatnis large enough compared withrands.</abstract><pub>Elsevier Ltd</pub><doi>10.1006/eujc.1996.0122</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-6698 |
ispartof | European journal of combinatorics, 1997-08, Vol.18 (6), p.607-611 |
issn | 0195-6698 1095-9971 |
language | eng |
recordid | cdi_crossref_primary_10_1006_eujc_1996_0122 |
source | ScienceDirect Freedom Collection |
title | The Odd Girth of the Generalised Kneser Graph |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A12%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Odd%20Girth%20of%20the%20Generalised%20Kneser%20Graph&rft.jtitle=European%20journal%20of%20combinatorics&rft.au=Denley,%20Tristan&rft.date=1997-08-01&rft.volume=18&rft.issue=6&rft.spage=607&rft.epage=611&rft.pages=607-611&rft.issn=0195-6698&rft.eissn=1095-9971&rft_id=info:doi/10.1006/eujc.1996.0122&rft_dat=%3Celsevier_cross%3ES0195669896901225%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-9166b26d49618eecfef705abe92974c0df9774a48efaa404400c5a2bc4d89bd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |