Loading…

Weak Type Inequalities for Best Simultaneous Approximation in Banach Spaces

For arbitrary Banach spaces Butzer and Scherer in 1968 showed that the approximation order of best approximation can characterized by the order of certain K-functionals. This general theorem has many applications such as the characterization of the best approximation of algebraic polynomials by modu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of approximation theory 1999-12, Vol.101 (2), p.359-403
Main Author: Jansche, Stefan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For arbitrary Banach spaces Butzer and Scherer in 1968 showed that the approximation order of best approximation can characterized by the order of certain K-functionals. This general theorem has many applications such as the characterization of the best approximation of algebraic polynomials by moduli of smoothness involving the Legendre, Chebyshev, or more general the Jacobi transform. In this paper we introduce a family of seminorms on the underlying approximation space which leads to a generalization of the Butzer–Scherer theorems. Now the characterization of the weighted best algebraic approximation in terms of the so-called main part modulus of Ditzian and Totik is included in our frame as another particular application. The goal of the paper is to show that for the characterization of the orders of best approximation, simultaneous approximation (in different spaces), reduction theorems, and K-functionals one has (essentially) only to verify three types of inequalities, namely inequalities of Jackson-, Bernstein-type and an equivalence condition which guarantees the equivalence of the seminorm and the underlying norm on certain subspaces. All the results are given in weak-type estimates for almost arbitrary approximation orders, the proofs use only functional analytic methods.
ISSN:0021-9045
1096-0430
DOI:10.1006/jath.1999.3372