Loading…
Almost Everywhere Convergence of Inverse Spherical Transforms on Noncompact Symmetric Spaces
LetGbe a connected noncompact semisimple Lie group with finite center and real rank one. Fix a maximal subgroupK. We considerKbi-invariant functionsfonGand their spherical transformf(λ)=∫Gf(g)ϕλ(g)dg,whereϕλdenote the elementary spherical functions onG/Kandλ⩾0. We consider the maximal operatorsS*f(t...
Saved in:
Published in: | Journal of functional analysis 1997-10, Vol.149 (2), p.277-304 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | LetGbe a connected noncompact semisimple Lie group with finite center and real rank one. Fix a maximal subgroupK. We considerKbi-invariant functionsfonGand their spherical transformf(λ)=∫Gf(g)ϕλ(g)dg,whereϕλdenote the elementary spherical functions onG/Kandλ⩾0. We consider the maximal operatorsS*f(t)=SupR>1∫R1f(λ)λ(a(t))|c(λ)|−2dλand prove thatS* maps boundedlyKLKs(G)→Ls(G)+L2(G) for 2n/(n+1) |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1006/jfan.1997.3123 |