Loading…

Nonlinear Stability Problem of a Rotating Doubly Diffusive Porous Layer

Lyapunov direct method is applied to study the non-linear conditional stability problem of a rotating doubly diffusive convection in a sparsely packed porous layer. For a Darcy number greater than or equal to 1000, and for any Prandtl number, Taylor number, and solute Rayleigh number it is found tha...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical analysis and applications 1995-03, Vol.190 (2), p.373-390
Main Authors: Guo, J.L., Kaloni, P.N.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lyapunov direct method is applied to study the non-linear conditional stability problem of a rotating doubly diffusive convection in a sparsely packed porous layer. For a Darcy number greater than or equal to 1000, and for any Prandtl number, Taylor number, and solute Rayleigh number it is found that the non-linear stability bound coincides with linear instability bound. For a Darcy number less than 1000, for a Prandtl number greater than or equal to one, and for a certain range of Taylor number, a coincidence between the linear and nonlinear (energy) stability thermal Rayleigh number values is still maintained. However, it is noted that for a Darcy number less than 1000, as the value of the solute Rayleigh number or the Taylor number increases, the coincidence domain between the two theories decreases quickly.
ISSN:0022-247X
1096-0813
DOI:10.1006/jmaa.1995.1082