Loading…
Normalizer of Γ1(m)
Let m∈N. Denote by N(Γ1(m)) the normalizer of Γ1(m) in PSL2(R). Then (i) N(Γ1(4))=N(Γ0(4))=Γ0(2∣2)+; (ii) if m≠4, then N(Γ1(m))=Γ0(m)+.
Saved in:
Published in: | Journal of number theory 2001-01, Vol.86 (1), p.50-60 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let m∈N. Denote by N(Γ1(m)) the normalizer of Γ1(m) in PSL2(R). Then (i) N(Γ1(4))=N(Γ0(4))=Γ0(2∣2)+; (ii) if m≠4, then N(Γ1(m))=Γ0(m)+. |
---|---|
ISSN: | 0022-314X 1096-1658 |
DOI: | 10.1006/jnth.2000.2555 |