Loading…

Normalizer of Γ1(m)

Let m∈N. Denote by N(Γ1(m)) the normalizer of Γ1(m) in PSL2(R). Then (i) N(Γ1(4))=N(Γ0(4))=Γ0(2∣2)+; (ii) if m≠4, then N(Γ1(m))=Γ0(m)+.

Saved in:
Bibliographic Details
Published in:Journal of number theory 2001-01, Vol.86 (1), p.50-60
Main Author: Lang, Mong-Lung
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2415-b019487dc71ece16f0fe7d32466f846f1e4c2839e6f5d6961de75453154a99d33
cites
container_end_page 60
container_issue 1
container_start_page 50
container_title Journal of number theory
container_volume 86
creator Lang, Mong-Lung
description Let m∈N. Denote by N(Γ1(m)) the normalizer of Γ1(m) in PSL2(R). Then (i) N(Γ1(4))=N(Γ0(4))=Γ0(2∣2)+; (ii) if m≠4, then N(Γ1(m))=Γ0(m)+.
doi_str_mv 10.1006/jnth.2000.2555
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1006_jnth_2000_2555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022314X00925551</els_id><sourcerecordid>S0022314X00925551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2415-b019487dc71ece16f0fe7d32466f846f1e4c2839e6f5d6961de75453154a99d33</originalsourceid><addsrcrecordid>eNp1z89KAzEQx_EgCq7Vm3juUQ-7ziSZ7OYoxX9Q9KLgLazJBFPariRF0NfwvXwmu9Srpzl9h99HiDOEBgHM5WK9eWskADSSiPZEhWBNjYa6fVEBSFkr1C-H4qiUBQAitVSJ04chr_pl-uI8HeL05xvPVxfH4iD2y8Inf3cinm-un2Z39fzx9n52Na-91Ej1K6DVXRt8i-wZTYTIbVBSGxM7bSKy9rJTlk2kYKzBwC1pUki6tzYoNRHN7q_PQymZo3vPadXnT4fgRpMbTW40udG0DbpdwNtVH4mzKz7x2nNImf3GhSH9l_4CFdxQjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Normalizer of Γ1(m)</title><source>ScienceDirect Freedom Collection</source><creator>Lang, Mong-Lung</creator><creatorcontrib>Lang, Mong-Lung</creatorcontrib><description>Let m∈N. Denote by N(Γ1(m)) the normalizer of Γ1(m) in PSL2(R). Then (i) N(Γ1(4))=N(Γ0(4))=Γ0(2∣2)+; (ii) if m≠4, then N(Γ1(m))=Γ0(m)+.</description><identifier>ISSN: 0022-314X</identifier><identifier>EISSN: 1096-1658</identifier><identifier>DOI: 10.1006/jnth.2000.2555</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>big picture of Conway ; congruence subgroups ; modular group ; normalizer</subject><ispartof>Journal of number theory, 2001-01, Vol.86 (1), p.50-60</ispartof><rights>2001 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2415-b019487dc71ece16f0fe7d32466f846f1e4c2839e6f5d6961de75453154a99d33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Lang, Mong-Lung</creatorcontrib><title>Normalizer of Γ1(m)</title><title>Journal of number theory</title><description>Let m∈N. Denote by N(Γ1(m)) the normalizer of Γ1(m) in PSL2(R). Then (i) N(Γ1(4))=N(Γ0(4))=Γ0(2∣2)+; (ii) if m≠4, then N(Γ1(m))=Γ0(m)+.</description><subject>big picture of Conway</subject><subject>congruence subgroups</subject><subject>modular group</subject><subject>normalizer</subject><issn>0022-314X</issn><issn>1096-1658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1z89KAzEQx_EgCq7Vm3juUQ-7ziSZ7OYoxX9Q9KLgLazJBFPariRF0NfwvXwmu9Srpzl9h99HiDOEBgHM5WK9eWskADSSiPZEhWBNjYa6fVEBSFkr1C-H4qiUBQAitVSJ04chr_pl-uI8HeL05xvPVxfH4iD2y8Inf3cinm-un2Z39fzx9n52Na-91Ej1K6DVXRt8i-wZTYTIbVBSGxM7bSKy9rJTlk2kYKzBwC1pUki6tzYoNRHN7q_PQymZo3vPadXnT4fgRpMbTW40udG0DbpdwNtVH4mzKz7x2nNImf3GhSH9l_4CFdxQjw</recordid><startdate>200101</startdate><enddate>200101</enddate><creator>Lang, Mong-Lung</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200101</creationdate><title>Normalizer of Γ1(m)</title><author>Lang, Mong-Lung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2415-b019487dc71ece16f0fe7d32466f846f1e4c2839e6f5d6961de75453154a99d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>big picture of Conway</topic><topic>congruence subgroups</topic><topic>modular group</topic><topic>normalizer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, Mong-Lung</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Journal of number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lang, Mong-Lung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normalizer of Γ1(m)</atitle><jtitle>Journal of number theory</jtitle><date>2001-01</date><risdate>2001</risdate><volume>86</volume><issue>1</issue><spage>50</spage><epage>60</epage><pages>50-60</pages><issn>0022-314X</issn><eissn>1096-1658</eissn><abstract>Let m∈N. Denote by N(Γ1(m)) the normalizer of Γ1(m) in PSL2(R). Then (i) N(Γ1(4))=N(Γ0(4))=Γ0(2∣2)+; (ii) if m≠4, then N(Γ1(m))=Γ0(m)+.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jnth.2000.2555</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-314X
ispartof Journal of number theory, 2001-01, Vol.86 (1), p.50-60
issn 0022-314X
1096-1658
language eng
recordid cdi_crossref_primary_10_1006_jnth_2000_2555
source ScienceDirect Freedom Collection
subjects big picture of Conway
congruence subgroups
modular group
normalizer
title Normalizer of Γ1(m)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A45%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normalizer%20of%20%CE%931(m)&rft.jtitle=Journal%20of%20number%20theory&rft.au=Lang,%20Mong-Lung&rft.date=2001-01&rft.volume=86&rft.issue=1&rft.spage=50&rft.epage=60&rft.pages=50-60&rft.issn=0022-314X&rft.eissn=1096-1658&rft_id=info:doi/10.1006/jnth.2000.2555&rft_dat=%3Celsevier_cross%3ES0022314X00925551%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2415-b019487dc71ece16f0fe7d32466f846f1e4c2839e6f5d6961de75453154a99d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true