Loading…

Adaptive topology optimization of elastoplastic structures

Material topology optimization is applied to determine the basic layout of a structure. The nonlinear structural response, e.g. buckling or plasticity, must be considered in order to generate a reliable design by structural optimization. In the present paper adaptive material topology optimization i...

Full description

Saved in:
Bibliographic Details
Published in:Structural Optimization 1998-04, Vol.15 (2), p.81-91
Main Authors: MAUTE, K, SCHWARZ, S, RAMM, E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Material topology optimization is applied to determine the basic layout of a structure. The nonlinear structural response, e.g. buckling or plasticity, must be considered in order to generate a reliable design by structural optimization. In the present paper adaptive material topology optimization is extended to elastoplasticity. The objective of the design problem is to maximize the structural ductility which is defined by the integral of the strain energy over a given range of a prescribed displacement. The mass in the design space is prescribed. The design variables are the densities of the finite elements. The optimization problem is solved by a gradient based OC algorithm. An elastoplastic von Mises material with linear, isotropic work-hardening/softening for small strains is used. A geometrically adaptive optimization procedure is applied in order to avoid artificial stress singularities and to increase the numerical efficiency of the optimization process. The geometric parametrization of the design model is adapted during the optimization process. Elastoplastic structural analysis is outlined. An efficient algorithm is introduced to determine the gradient of the ductility with respect to the densities of the finite elements. The overall optimization procedure is presented and verified with design problems for plane stress conditions.
ISSN:0934-4373
1615-147X
1436-2503
1615-1488
DOI:10.1007/BF01278493