Loading…
The stable equivalence and cancellation problems
Let K be an arbitrary field of characteristic 0, and $\mathbf{A}^n$ the n-dimensional affine space over K. A well-known cancellation problem asks, given two algebraic varieties $V_1, V_2 \subseteq \mathbf{A}^n$ with isomorphic cylinders $V_1 \times \mathbf{A}^1$ and $V_2 \times \mathbf{A}^1$, whethe...
Saved in:
Published in: | Commentarii mathematici Helvetici 2004, Vol.79 (2), p.341-349 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let K be an arbitrary field of characteristic 0, and $\mathbf{A}^n$ the n-dimensional affine space over K. A well-known cancellation problem asks, given two algebraic varieties $V_1, V_2 \subseteq \mathbf{A}^n$ with isomorphic cylinders $V_1 \times \mathbf{A}^1$ and $V_2 \times \mathbf{A}^1$, whether $V_1$ and $V_2$ themselves are isomorphic. In this paper, we focus on a related problem: given two varieties with equivalent (under an automorphism of $\mathbf{A}^{n+1}$) cylinders $V_1 \times \mathbf{A}^1$ and $V_2 \times \mathbf{A}^1$, are $V_1$ and $V_2$ equivalent under an automorphism of $\mathbf{A}^n$? We call this stable equivalence problem. We show that the answer is positive for any two curves $V_1, V_2 \subseteq \mathbf{A}^2$. For an arbitrary $n \ge 2$, we consider a special, arguably the most important, case of both problems, where one of the varieties is a hyperplane. We show that a positive solution of the stable equivalence problem in this case implies a positive solution of the cancellation problem. |
---|---|
ISSN: | 0010-2571 1420-8946 |
DOI: | 10.1007/s00014-003-0796-3 |