Loading…

Transposed Poisson Structures on Generalized Witt Algebras and Block Lie Algebras

We describe transposed Poisson structures on generalized Witt algebras W ( A , V , ⟨ · , · ⟩ ) and Block Lie algebras L ( A ,  g ,  f ) over a field F of characteristic zero, where ⟨ · , · ⟩ and f are non-degenerate. More specifically, if dim ( V ) > 1 , then all the transposed Poisson algebra st...

Full description

Saved in:
Bibliographic Details
Published in:Resultate der Mathematik 2023-10, Vol.78 (5), Article 186
Main Authors: Kaygorodov, Ivan, Khrypchenko, Mykola
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We describe transposed Poisson structures on generalized Witt algebras W ( A , V , ⟨ · , · ⟩ ) and Block Lie algebras L ( A ,  g ,  f ) over a field F of characteristic zero, where ⟨ · , · ⟩ and f are non-degenerate. More specifically, if dim ( V ) > 1 , then all the transposed Poisson algebra structures on W ( A , V , ⟨ · , · ⟩ ) are trivial; and if dim ( V ) = 1 , then such structures are, up to isomorphism, mutations of the group algebra structure on FA . The transposed Poisson algebra structures on L ( A ,  g ,  f ) are in a one-to-one correspondence with commutative and associative multiplications defined on a complement of the square of L ( A ,  g ,  f ) with values in the center of L ( A ,  g ,  f ). In particular, all of them are usual Poisson structures on L ( A ,  g ,  f ). This generalizes earlier results about transposed Poisson structures on Block Lie algebras B ( q ) .
ISSN:1422-6383
1420-9012
DOI:10.1007/s00025-023-01962-y