Loading…
Central-upwind schemes for the system of shallow water equations with horizontal temperature gradients
We introduce a central-upwind scheme for one- and two-dimensional systems of shallow-water equations with horizontal temperature gradients (the Ripa system). The scheme is well-balanced, positivity preserving and does not develop spurious pressure oscillations in the neighborhood of temperature jump...
Saved in:
Published in: | Numerische Mathematik 2014-08, Vol.127 (4), p.595-639 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce a central-upwind scheme for one- and two-dimensional systems of shallow-water equations with horizontal temperature gradients (the Ripa system). The scheme is well-balanced, positivity preserving and does not develop spurious pressure oscillations in the neighborhood of temperature jumps, that is, near the contact waves. Such oscillations would typically appear when a conventional Godunov-type finite volume method is applied to the Ripa system, and the nature of the oscillation is similar to the ones appearing at material interfaces in compressible multifluid computations. The idea behind the proposed approach is to utilize the interface tracking method, originally developed in Chertock et al. (M2AN Math Model Numer Anal 42:991–1019,
2008
) for compressible multifluids. The resulting scheme is highly accurate, preserves two types of “lake at rest” steady states, and is oscillation free across the temperature jumps, as it is illustrated in a number of numerical experiments. |
---|---|
ISSN: | 0029-599X 0945-3245 |
DOI: | 10.1007/s00211-013-0597-6 |