Loading…
Categorified Symplectic Geometry and the Classical String
A Lie 2-algebra is a ‘categorified’ version of a Lie algebra: that is, a category equipped with structures analogous to those of a Lie algebra, for which the usual laws hold up to isomorphism. In the classical mechanics of point particles, the phase space is often a symplectic manifold, and the Pois...
Saved in:
Published in: | Communications in mathematical physics 2010-02, Vol.293 (3), p.701-725 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A Lie 2-algebra is a ‘categorified’ version of a Lie algebra: that is, a category equipped with structures analogous to those of a Lie algebra, for which the usual laws hold up to isomorphism. In the classical mechanics of point particles, the phase space is often a symplectic manifold, and the Poisson bracket of functions on this space gives a Lie algebra of observables. Multisymplectic geometry describes an
n
-dimensional field theory using a phase space that is an ‘
n
-plectic manifold’: a finite-dimensional manifold equipped with a closed nondegenerate (
n
+ 1)-form. Here we consider the case
n
= 2. For any 2-plectic manifold, we construct a Lie 2-algebra of observables. We then explain how this Lie 2-algebra can be used to describe the dynamics of a classical bosonic string. Just as the presence of an electromagnetic field affects the symplectic structure for a charged point particle, the presence of a
B
field affects the 2-plectic structure for the string. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-009-0951-9 |