Loading…

Improved YOLOv5 network method for remote sensing image-based ground objects recognition

High-resolution remote sensing images have the characteristics of complex background environment, clustering of objects, etc., the complex background makes the remote sensing image contain a large number of irrelevant ground objects with a high similarity or overlap, which makes the edge and texture...

Full description

Saved in:
Bibliographic Details
Published in:Soft computing (Berlin, Germany) Germany), 2022-10, Vol.26 (20), p.10879-10889
Main Authors: Xue, Jie, Zheng, Yongguo, Dong-Ye, Changlei, Wang, Ping, Yasir, Muhammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-resolution remote sensing images have the characteristics of complex background environment, clustering of objects, etc., the complex background makes the remote sensing image contain a large number of irrelevant ground objects with a high similarity or overlap, which makes the edge and texture of the objects not clear enough, and this leads to low recognition accuracy of ground objects such as airports, dams, and golf field, although the size of this object is large. Based on this problem, this paper proposes a remote sensing image object detection method based on the YOLOv5 network. By improving the backbone extraction network, the network structure can be deepened to get more information about large objects, and the detection effect can be improved by adding an attention mechanism and adding an output layer to enhance feature extraction and feature fusion. The pre-training weight is obtained by transfer learning and used as the training weight of the improved YOLOv5 to speed up the network convergence. The experiment is carried out on the DIOR dataset, the results show that the improved YOLOv5 network can significantly improve the accuracy of large object recognition compared with the YOLO series network and the EfficientDet model on DIOR dataset, and the mAP of the improved YOLOv5 network is 80.5%, which is 2% higher than the original YOLOv5 network.
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-022-07106-8