Loading…
FTIR spectroelectrochemical study of the activation and inactivation processes of [NiFe] hydrogenases: effects of solvent isotope replacement and site-directed mutagenesis
The kinetics of the activation and anaerobic inactivation processes of Desulfovibrio gigas hydrogenase have been measured in D(2)O by FTIR spectroelectrochemistry. A primary kinetic solvent isotope effect was observed for the inactivation process but not for the activation step. The kinetics of thes...
Saved in:
Published in: | Journal of biological inorganic chemistry 2004-07, Vol.9 (5), p.636-642 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The kinetics of the activation and anaerobic inactivation processes of Desulfovibrio gigas hydrogenase have been measured in D(2)O by FTIR spectroelectrochemistry. A primary kinetic solvent isotope effect was observed for the inactivation process but not for the activation step. The kinetics of these processes have been also measured after replacement of a glutamic residue placed near the active site of an analogous [NiFe] hydrogenase from Desulfovibrio fructosovorans. Its replacement by a glutamine affected greatly the kinetics of the inactivation process but only slightly the activation process. The interpretation of the experimental results is that the rate-limiting step for anaerobic inactivation is the formation from water of a micro-OH(-) bridge at the hydrogenase active site, and that Glu25 has a role in this step. |
---|---|
ISSN: | 0949-8257 1432-1327 |
DOI: | 10.1007/s00775-004-0559-7 |