Loading…
Computing the Noncommutative Inner Rank by Means of Operator-Valued Free Probability Theory
We address the noncommutative version of the Edmonds’ problem, which asks to determine the inner rank of a matrix in noncommuting variables. We provide an algorithm for the calculation of this inner rank by relating the problem with the distribution of a basic object in free probability theory, name...
Saved in:
Published in: | Foundations of computational mathematics 2024-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We address the noncommutative version of the Edmonds’ problem, which asks to determine the inner rank of a matrix in noncommuting variables. We provide an algorithm for the calculation of this inner rank by relating the problem with the distribution of a basic object in free probability theory, namely operator-valued semicircular elements. We have to solve a matrix-valued quadratic equation, for which we provide precise analytical and numerical control on the fixed point algorithm for solving the equation. Numerical examples show the efficiency of the algorithm. |
---|---|
ISSN: | 1615-3375 1615-3383 |
DOI: | 10.1007/s10208-024-09684-5 |