Loading…
Asymptotic Property of Approximation to xαsgn x by Newman Type Operators
Approximation to the function |x| plays an important role in approximation theory. This paper studies the approximation to the function xαsgn x, which equals |x| if α = 1. We construct a Newman Type Operator rn(x) and prove max |x|≤1|xαsgn x-rn(x)|~Cn1/4e-π1/2(1/2)αn....
Saved in:
Published in: | Acta Mathematicae Applicatae Sinica 2010-10, Vol.26 (4), p.617-624 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Approximation to the function |x| plays an important role in approximation theory. This paper studies the approximation to the function xαsgn x, which equals |x| if α = 1. We construct a Newman Type Operator rn(x) and prove max |x|≤1|xαsgn x-rn(x)|~Cn1/4e-π1/2(1/2)αn. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-007-7147-x |