Loading…
On the Blowing up of Solutions to One-dimensional Quantum Navier-Stokes Equations
The blow-up in finite time for the solutions to the initial-boundary value problem associated to the one-dimensional quantum Navier-Stokes equations in a bounded domain is proved. The model consists of the mass conservation equation and a momentum balance equation, including a nonlinear third-order...
Saved in:
Published in: | Acta Mathematicae Applicatae Sinica 2013-10, Vol.29 (4), p.855-860 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The blow-up in finite time for the solutions to the initial-boundary value problem associated to the one-dimensional quantum Navier-Stokes equations in a bounded domain is proved. The model consists of the mass conservation equation and a momentum balance equation, including a nonlinear third-order differen- tial operator, with the quantum Bohm potential, and a density-dependent viscosity. It is shown that, under suitable boundary conditions and assumptions on the initial data, the solution blows up after a finite time, if the viscosity constant is not bigger than the scaled Planck constant. The proof is inspired by an observable constructed by Gamba, Gualdani and Zhang, which has been used to study the blowing up of solutions to quantum hydrodynamic models. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-013-0262-y |