Loading…
Generations of Integrable Hierarchies and Exact Solutions of Related Evolution Equations with Variable Coefficients
We first propose a way for generating Lie algebras from which we get a few kinds of reduced 6 6 Lie algebras, denoted by R6, R8 and R1,R6/2, respectively. As for applications of some of them, a Lax pair is introduced by using the Lie algebra R6 whose compatibility gives rise to an integrable hierarc...
Saved in:
Published in: | Acta Mathematicae Applicatae Sinica 2014-10, Vol.30 (4), p.1085-1106 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We first propose a way for generating Lie algebras from which we get a few kinds of reduced 6 6 Lie algebras, denoted by R6, R8 and R1,R6/2, respectively. As for applications of some of them, a Lax pair is introduced by using the Lie algebra R6 whose compatibility gives rise to an integrable hierarchy with 4- potential functions and two arbitrary parameters whose corresponding Hamiltonian structure is obtained by the variational identity. Then we make use of the Lie algebra R6 to deduce a nonlinear integrable coupling hierarchy of the mKdV equation whose Hamiltonian structure is also obtained. Again,via using the Lie algebra R62, we introduce a Lax pair and work out a linear integrable coupling hierarchy of the mKdV equation whose Hamiltonian structure is obtained. Finally, we get some reduced linear and nonlinear equations with variable coefficients and work out the elliptic coordinate solutions, exact traveling wave solutions, respectively. |
---|---|
ISSN: | 0168-9673 1618-3932 |
DOI: | 10.1007/s10255-014-0445-1 |