Loading…
A Relaxed Inertial Factor of the Modified Subgradient Extragradient Method for Solving Pseudo Monotone Variational Inequalities in Hilbert Spaces
In this paper, we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces. For solving this problem, we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method. Some very recent papers...
Saved in:
Published in: | Acta mathematica scientia 2023, Vol.43 (1), p.184-204 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces. For solving this problem, we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method. Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in [0; 1]. The purpose of this work is to continue working in this direction, we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1. Under suitable mild conditions, we establish the weak convergence of the proposed algorithm. Moreover, linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions. Finally, some numerical illustrations are given to confirm the theoretical analysis. |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1007/s10473-023-0112-9 |