Loading…

A Relaxed Inertial Factor of the Modified Subgradient Extragradient Method for Solving Pseudo Monotone Variational Inequalities in Hilbert Spaces

In this paper, we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces. For solving this problem, we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method. Some very recent papers...

Full description

Saved in:
Bibliographic Details
Published in:Acta mathematica scientia 2023, Vol.43 (1), p.184-204
Main Authors: Thong, Duong Viet, Dung, Vu Tien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c218t-53ba7b277b3353a6c351a4ac79f89fa11d57882e77d433e3342ac5496188f8583
cites cdi_FETCH-LOGICAL-c218t-53ba7b277b3353a6c351a4ac79f89fa11d57882e77d433e3342ac5496188f8583
container_end_page 204
container_issue 1
container_start_page 184
container_title Acta mathematica scientia
container_volume 43
creator Thong, Duong Viet
Dung, Vu Tien
description In this paper, we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces. For solving this problem, we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method. Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in [0; 1]. The purpose of this work is to continue working in this direction, we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1. Under suitable mild conditions, we establish the weak convergence of the proposed algorithm. Moreover, linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions. Finally, some numerical illustrations are given to confirm the theoretical analysis.
doi_str_mv 10.1007/s10473-023-0112-9
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10473_023_0112_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10473_023_0112_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-53ba7b277b3353a6c351a4ac79f89fa11d57882e77d433e3342ac5496188f8583</originalsourceid><addsrcrecordid>eNp9kM9OwzAMxiMEEmPwANzyAoX8aZr0OE0bm7QJxIBr5Lbplqk0I8nQeAzemExDHDlYtmX_PssfQreU3FFC5H2gJJc8IywFpSwrz9CACpkKouQ5GhAmUl0QdomuQtgSQgtW5AP0PcLPpoODafC8Nz5a6PAU6ug8di2OG4OXrrGtTfPVvlp7aKzpI54cooe_bmnixjW4TdDKdZ-2X-OnYPaNS3DvousNfgNvIVrXJ_106GMPnY3WBGx7PLNdlU7j1Q5qE67RRQtdMDe_eYhep5OX8SxbPD7Mx6NFVjOqYiZ4BbJiUlacCw5FzQWFHGpZtqpsgdJGSKWYkbLJOTec5wxqkZcFVapVQvEhoifd2rsQvGn1ztt38F-aEn30VJ881clTffRUl4lhJyak3X5tvN66vU8_hX-gH10We30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Relaxed Inertial Factor of the Modified Subgradient Extragradient Method for Solving Pseudo Monotone Variational Inequalities in Hilbert Spaces</title><source>Springer Nature</source><creator>Thong, Duong Viet ; Dung, Vu Tien</creator><creatorcontrib>Thong, Duong Viet ; Dung, Vu Tien</creatorcontrib><description>In this paper, we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces. For solving this problem, we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method. Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in [0; 1]. The purpose of this work is to continue working in this direction, we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1. Under suitable mild conditions, we establish the weak convergence of the proposed algorithm. Moreover, linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions. Finally, some numerical illustrations are given to confirm the theoretical analysis.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1007/s10473-023-0112-9</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Acta mathematica scientia, 2023, Vol.43 (1), p.184-204</ispartof><rights>Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-53ba7b277b3353a6c351a4ac79f89fa11d57882e77d433e3342ac5496188f8583</citedby><cites>FETCH-LOGICAL-c218t-53ba7b277b3353a6c351a4ac79f89fa11d57882e77d433e3342ac5496188f8583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Thong, Duong Viet</creatorcontrib><creatorcontrib>Dung, Vu Tien</creatorcontrib><title>A Relaxed Inertial Factor of the Modified Subgradient Extragradient Method for Solving Pseudo Monotone Variational Inequalities in Hilbert Spaces</title><title>Acta mathematica scientia</title><addtitle>Acta Math Sci</addtitle><description>In this paper, we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces. For solving this problem, we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method. Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in [0; 1]. The purpose of this work is to continue working in this direction, we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1. Under suitable mild conditions, we establish the weak convergence of the proposed algorithm. Moreover, linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions. Finally, some numerical illustrations are given to confirm the theoretical analysis.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMxiMEEmPwANzyAoX8aZr0OE0bm7QJxIBr5Lbplqk0I8nQeAzemExDHDlYtmX_PssfQreU3FFC5H2gJJc8IywFpSwrz9CACpkKouQ5GhAmUl0QdomuQtgSQgtW5AP0PcLPpoODafC8Nz5a6PAU6ug8di2OG4OXrrGtTfPVvlp7aKzpI54cooe_bmnixjW4TdDKdZ-2X-OnYPaNS3DvousNfgNvIVrXJ_106GMPnY3WBGx7PLNdlU7j1Q5qE67RRQtdMDe_eYhep5OX8SxbPD7Mx6NFVjOqYiZ4BbJiUlacCw5FzQWFHGpZtqpsgdJGSKWYkbLJOTec5wxqkZcFVapVQvEhoifd2rsQvGn1ztt38F-aEn30VJ881clTffRUl4lhJyak3X5tvN66vU8_hX-gH10We30</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Thong, Duong Viet</creator><creator>Dung, Vu Tien</creator><general>Springer Nature Singapore</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>A Relaxed Inertial Factor of the Modified Subgradient Extragradient Method for Solving Pseudo Monotone Variational Inequalities in Hilbert Spaces</title><author>Thong, Duong Viet ; Dung, Vu Tien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-53ba7b277b3353a6c351a4ac79f89fa11d57882e77d433e3342ac5496188f8583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thong, Duong Viet</creatorcontrib><creatorcontrib>Dung, Vu Tien</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thong, Duong Viet</au><au>Dung, Vu Tien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Relaxed Inertial Factor of the Modified Subgradient Extragradient Method for Solving Pseudo Monotone Variational Inequalities in Hilbert Spaces</atitle><jtitle>Acta mathematica scientia</jtitle><stitle>Acta Math Sci</stitle><date>2023</date><risdate>2023</risdate><volume>43</volume><issue>1</issue><spage>184</spage><epage>204</epage><pages>184-204</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>In this paper, we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces. For solving this problem, we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method. Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in [0; 1]. The purpose of this work is to continue working in this direction, we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1. Under suitable mild conditions, we establish the weak convergence of the proposed algorithm. Moreover, linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions. Finally, some numerical illustrations are given to confirm the theoretical analysis.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s10473-023-0112-9</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9602
ispartof Acta mathematica scientia, 2023, Vol.43 (1), p.184-204
issn 0252-9602
1572-9087
language eng
recordid cdi_crossref_primary_10_1007_s10473_023_0112_9
source Springer Nature
subjects Analysis
Mathematics
Mathematics and Statistics
title A Relaxed Inertial Factor of the Modified Subgradient Extragradient Method for Solving Pseudo Monotone Variational Inequalities in Hilbert Spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Relaxed%20Inertial%20Factor%20of%20the%20Modified%20Subgradient%20Extragradient%20Method%20for%20Solving%20Pseudo%20Monotone%20Variational%20Inequalities%20in%20Hilbert%20Spaces&rft.jtitle=Acta%20mathematica%20scientia&rft.au=Thong,%20Duong%20Viet&rft.date=2023&rft.volume=43&rft.issue=1&rft.spage=184&rft.epage=204&rft.pages=184-204&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1007/s10473-023-0112-9&rft_dat=%3Ccrossref_sprin%3E10_1007_s10473_023_0112_9%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-53ba7b277b3353a6c351a4ac79f89fa11d57882e77d433e3342ac5496188f8583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true