Loading…
A Relaxed Inertial Factor of the Modified Subgradient Extragradient Method for Solving Pseudo Monotone Variational Inequalities in Hilbert Spaces
In this paper, we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces. For solving this problem, we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method. Some very recent papers...
Saved in:
Published in: | Acta mathematica scientia 2023, Vol.43 (1), p.184-204 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c218t-53ba7b277b3353a6c351a4ac79f89fa11d57882e77d433e3342ac5496188f8583 |
---|---|
cites | cdi_FETCH-LOGICAL-c218t-53ba7b277b3353a6c351a4ac79f89fa11d57882e77d433e3342ac5496188f8583 |
container_end_page | 204 |
container_issue | 1 |
container_start_page | 184 |
container_title | Acta mathematica scientia |
container_volume | 43 |
creator | Thong, Duong Viet Dung, Vu Tien |
description | In this paper, we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces. For solving this problem, we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method. Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in [0; 1]. The purpose of this work is to continue working in this direction, we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1. Under suitable mild conditions, we establish the weak convergence of the proposed algorithm. Moreover, linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions. Finally, some numerical illustrations are given to confirm the theoretical analysis. |
doi_str_mv | 10.1007/s10473-023-0112-9 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s10473_023_0112_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s10473_023_0112_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-53ba7b277b3353a6c351a4ac79f89fa11d57882e77d433e3342ac5496188f8583</originalsourceid><addsrcrecordid>eNp9kM9OwzAMxiMEEmPwANzyAoX8aZr0OE0bm7QJxIBr5Lbplqk0I8nQeAzemExDHDlYtmX_PssfQreU3FFC5H2gJJc8IywFpSwrz9CACpkKouQ5GhAmUl0QdomuQtgSQgtW5AP0PcLPpoODafC8Nz5a6PAU6ug8di2OG4OXrrGtTfPVvlp7aKzpI54cooe_bmnixjW4TdDKdZ-2X-OnYPaNS3DvousNfgNvIVrXJ_106GMPnY3WBGx7PLNdlU7j1Q5qE67RRQtdMDe_eYhep5OX8SxbPD7Mx6NFVjOqYiZ4BbJiUlacCw5FzQWFHGpZtqpsgdJGSKWYkbLJOTec5wxqkZcFVapVQvEhoifd2rsQvGn1ztt38F-aEn30VJ881clTffRUl4lhJyak3X5tvN66vU8_hX-gH10We30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Relaxed Inertial Factor of the Modified Subgradient Extragradient Method for Solving Pseudo Monotone Variational Inequalities in Hilbert Spaces</title><source>Springer Nature</source><creator>Thong, Duong Viet ; Dung, Vu Tien</creator><creatorcontrib>Thong, Duong Viet ; Dung, Vu Tien</creatorcontrib><description>In this paper, we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces. For solving this problem, we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method. Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in [0; 1]. The purpose of this work is to continue working in this direction, we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1. Under suitable mild conditions, we establish the weak convergence of the proposed algorithm. Moreover, linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions. Finally, some numerical illustrations are given to confirm the theoretical analysis.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1007/s10473-023-0112-9</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Acta mathematica scientia, 2023, Vol.43 (1), p.184-204</ispartof><rights>Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-53ba7b277b3353a6c351a4ac79f89fa11d57882e77d433e3342ac5496188f8583</citedby><cites>FETCH-LOGICAL-c218t-53ba7b277b3353a6c351a4ac79f89fa11d57882e77d433e3342ac5496188f8583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Thong, Duong Viet</creatorcontrib><creatorcontrib>Dung, Vu Tien</creatorcontrib><title>A Relaxed Inertial Factor of the Modified Subgradient Extragradient Method for Solving Pseudo Monotone Variational Inequalities in Hilbert Spaces</title><title>Acta mathematica scientia</title><addtitle>Acta Math Sci</addtitle><description>In this paper, we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces. For solving this problem, we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method. Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in [0; 1]. The purpose of this work is to continue working in this direction, we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1. Under suitable mild conditions, we establish the weak convergence of the proposed algorithm. Moreover, linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions. Finally, some numerical illustrations are given to confirm the theoretical analysis.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OwzAMxiMEEmPwANzyAoX8aZr0OE0bm7QJxIBr5Lbplqk0I8nQeAzemExDHDlYtmX_PssfQreU3FFC5H2gJJc8IywFpSwrz9CACpkKouQ5GhAmUl0QdomuQtgSQgtW5AP0PcLPpoODafC8Nz5a6PAU6ug8di2OG4OXrrGtTfPVvlp7aKzpI54cooe_bmnixjW4TdDKdZ-2X-OnYPaNS3DvousNfgNvIVrXJ_106GMPnY3WBGx7PLNdlU7j1Q5qE67RRQtdMDe_eYhep5OX8SxbPD7Mx6NFVjOqYiZ4BbJiUlacCw5FzQWFHGpZtqpsgdJGSKWYkbLJOTec5wxqkZcFVapVQvEhoifd2rsQvGn1ztt38F-aEn30VJ881clTffRUl4lhJyak3X5tvN66vU8_hX-gH10We30</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Thong, Duong Viet</creator><creator>Dung, Vu Tien</creator><general>Springer Nature Singapore</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>A Relaxed Inertial Factor of the Modified Subgradient Extragradient Method for Solving Pseudo Monotone Variational Inequalities in Hilbert Spaces</title><author>Thong, Duong Viet ; Dung, Vu Tien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-53ba7b277b3353a6c351a4ac79f89fa11d57882e77d433e3342ac5496188f8583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thong, Duong Viet</creatorcontrib><creatorcontrib>Dung, Vu Tien</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thong, Duong Viet</au><au>Dung, Vu Tien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Relaxed Inertial Factor of the Modified Subgradient Extragradient Method for Solving Pseudo Monotone Variational Inequalities in Hilbert Spaces</atitle><jtitle>Acta mathematica scientia</jtitle><stitle>Acta Math Sci</stitle><date>2023</date><risdate>2023</risdate><volume>43</volume><issue>1</issue><spage>184</spage><epage>204</epage><pages>184-204</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>In this paper, we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces. For solving this problem, we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method. Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in [0; 1]. The purpose of this work is to continue working in this direction, we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1. Under suitable mild conditions, we establish the weak convergence of the proposed algorithm. Moreover, linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions. Finally, some numerical illustrations are given to confirm the theoretical analysis.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s10473-023-0112-9</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2023, Vol.43 (1), p.184-204 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s10473_023_0112_9 |
source | Springer Nature |
subjects | Analysis Mathematics Mathematics and Statistics |
title | A Relaxed Inertial Factor of the Modified Subgradient Extragradient Method for Solving Pseudo Monotone Variational Inequalities in Hilbert Spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Relaxed%20Inertial%20Factor%20of%20the%20Modified%20Subgradient%20Extragradient%20Method%20for%20Solving%20Pseudo%20Monotone%20Variational%20Inequalities%20in%20Hilbert%20Spaces&rft.jtitle=Acta%20mathematica%20scientia&rft.au=Thong,%20Duong%20Viet&rft.date=2023&rft.volume=43&rft.issue=1&rft.spage=184&rft.epage=204&rft.pages=184-204&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1007/s10473-023-0112-9&rft_dat=%3Ccrossref_sprin%3E10_1007_s10473_023_0112_9%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-53ba7b277b3353a6c351a4ac79f89fa11d57882e77d433e3342ac5496188f8583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |