Loading…

On the geometrization of matter by exotic smoothness

In this paper we discuss the question how matter may emerge from space. For that purpose we consider the smoothness structure of spacetime as underlying structure for a geometrical model of matter. For a large class of compact 4-manifolds, the elliptic surfaces, one is able to apply the knot surgery...

Full description

Saved in:
Bibliographic Details
Published in:General relativity and gravitation 2012-11, Vol.44 (11), p.2825-2856
Main Authors: Asselmeyer-Maluga, Torsten, Rosé, Helge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we discuss the question how matter may emerge from space. For that purpose we consider the smoothness structure of spacetime as underlying structure for a geometrical model of matter. For a large class of compact 4-manifolds, the elliptic surfaces, one is able to apply the knot surgery of Fintushel and Stern to change the smoothness structure. The influence of this surgery to the Einstein–Hilbert action is discussed. Using the Weierstrass representation, we are able to show that the knotted torus used in knot surgery is represented by a spinor fulfilling the Dirac equation and leading to a Dirac term in the Einstein–Hilbert action. For sufficient complicated links and knots, there are “connecting tubes” (graph manifolds, torus bundles) which introduce an action term of a gauge field. Both terms are genuinely geometrical and characterized by the mean curvature of the components. We also discuss the gauge group of the theory to be U (1) × SU (2) ×  SU (3).
ISSN:0001-7701
1572-9532
DOI:10.1007/s10714-012-1419-3