Loading…

Two-dimensional Meixner Random Vectors of Class

The paper is divided into two parts. In the first part we lay down the foundation for defining the joint annihilation–preservation–creation decomposition of a finite family of not necessarily commutative random variables, and show that this decomposition is essentially unique. In the second part we...

Full description

Saved in:
Bibliographic Details
Published in:Journal of theoretical probability 2011-03, Vol.24 (1), p.39-65
Main Author: Stan, Aurel I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The paper is divided into two parts. In the first part we lay down the foundation for defining the joint annihilation–preservation–creation decomposition of a finite family of not necessarily commutative random variables, and show that this decomposition is essentially unique. In the second part we show that any two, not necessarily commutative, random variables X and Y for which the vector space spanned by the identity and their annihilation, preservation, and creation operators equipped with the bracket given by the commutator forms a Lie algebra are equivalent up to an invertible linear transformation to two independent Meixner random variables with mixed preservation operators. In particular, if X and Y commute, then they are equivalent up to an invertible linear transformation to two independent classic Meixner random variables. To show this we start with a small technical condition called “non-degeneracy”.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-010-0309-4