Loading…
Comparison of Exit Moment Spectra for Extrinsic Metric Balls
We prove explicit upper and lower bounds for the L 1 -moment spectra for the Brownian motion exit time from extrinsic metric balls of submanifolds P m in ambient Riemannian spaces N n . We assume that P and N both have controlled radial curvatures (mean curvature and sectional curvature, respectivel...
Saved in:
Published in: | Potential analysis 2012, Vol.36 (1), p.137-153 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We prove explicit upper and lower bounds for the
L
1
-moment spectra for the Brownian motion exit time from extrinsic metric balls of submanifolds
P
m
in ambient Riemannian spaces
N
n
. We assume that
P
and
N
both have controlled radial curvatures (mean curvature and sectional curvature, respectively) as viewed from a pole in
N
. The bounds for the exit moment spectra are given in terms of the corresponding spectra for geodesic metric balls in suitably warped product model spaces. The bounds are sharp in the sense that equalities are obtained in characteristic cases. As a corollary we also obtain new intrinsic comparison results for the exit time spectra for metric balls in the ambient manifolds
N
n
themselves. |
---|---|
ISSN: | 0926-2601 1572-929X |
DOI: | 10.1007/s11118-011-9223-3 |