Loading…

Heart failure patients have enhanced cerebral autoregulation response in acute ischemic stroke

The cerebrovascular effects of a failing heart-pump are largely unknown. Chronic heart failure (HF) might cause pre-conditioning effect on cerebral hemodynamics but not study so far in acute stroke. We aimed to investigate if HF induces effects in dynamic cerebral autoregulation (CA), within 6 h of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thrombosis and thrombolysis 2020-10, Vol.50 (3), p.753-761
Main Authors: Castro, Pedro, Serrador, Jorge, Rocha, Isabel, Chaves, Paulo Castro, Sorond, Farzaneh, Azevedo, Elsa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cerebrovascular effects of a failing heart-pump are largely unknown. Chronic heart failure (HF) might cause pre-conditioning effect on cerebral hemodynamics but not study so far in acute stroke. We aimed to investigate if HF induces effects in dynamic cerebral autoregulation (CA), within 6 h of symptom-onset through chronic stage of ischemic stroke. We enrolled 50 patients with acute ischemic stroke. Groups with (N = 8) and without HF and 20 heathy controls were compared. Arterial blood pressure (Finometer) and cerebral blood flow velocity (transcranial Doppler) were monitored within 6 and at 24 h from symptom-onset and at 3 months. We assessed dynamic CA by transfer function analysis and cardiac disease markers. HF associated with higher phase (better dynamic CA) at ischemic hemisphere within 6 (p = 0.042) and at 24 h (p = 0.006) but this effect was not evident at 3 months (p > 0.05). Gain and coherence trends were similar between groups. We found a positive correlation between phase and admission troponin I levels (Spearman’s r = 0.348, p = 0.044). Our findings advances on the knowledge of how brain and heart interact in acute ischemic stroke by showing a sustained dynamic cerebral autoregulation response in HF patients mainly with severe aortic valve disease. Understanding the physiological mechanisms that govern this complex interplay can be useful to find novel therapeutic targets which can improve outcome in ischemic stroke.
ISSN:0929-5305
1573-742X
DOI:10.1007/s11239-020-02166-9